|本期目录/Table of Contents|

[1]万丽丽,王转茸,汤谧,等.甜瓜遗传转化技术的优化及DRs类基因的应用[J].江苏农业科学,2023,51(7):49-58.
 Wan Lili,et al.Optimization of genetic transformation technology and application of DRs genes in melon[J].Jiangsu Agricultural Sciences,2023,51(7):49-58.
点击复制

甜瓜遗传转化技术的优化及DRs类基因的应用(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第7期
页码:
49-58
栏目:
生物技术
出版日期:
2023-04-05

文章信息/Info

Title:
Optimization of genetic transformation technology and application of DRs genes in melon
作者:
万丽丽1王转茸1汤谧1张学军23任俭1曾红霞1张娜1孙玉宏1朱志坤4
1.武汉市农业科学院,湖北武汉 430065; 2新疆农业科学院哈密瓜研究中心,新疆乌鲁木齐 830091;3.新疆农业科学院海南三亚农作物育种试验中心,海南三亚 572014; 4.湖北省武汉市蔡甸区农业农村局,湖北武汉 430199
Author(s):
Wan Liliet al
关键词:
甜瓜农杆菌浸染遗传转化真空渗透不定芽诱导发育调控基因
Keywords:
-
分类号:
S652.03
DOI:
-
文献标志码:
A
摘要:
甜瓜(Cucumis melo L.)是我国重要的设施栽培作物,具有重要的经济价值。随着农作物全基因组测序以及基因编辑技术的建立,遗传改良和基因功能验证亟需建立高效稳定的遗传转化体系。遗传转化率由基因型和植物激素互作所决定,目前,甜瓜遗传转化技术普遍存在遗传转化载体递送到细胞困难、芽再生难、遗传转化效率低等诸多问题。本研究选取5个厚皮甜瓜和4个薄皮甜瓜品种的子叶为外植体,对遗传转化试验中农杆菌浸染的方法、植物生长调节剂、筛选剂浓度等多个因素进行筛选,建立适合厚皮和薄皮甜瓜的遗传转化技术体系。结果表明,不定芽诱导最佳激素组合是1 mg/L 6-BA和 1 mg/L ABA,最佳Basta筛选浓度为5 mg/L。由于甜瓜原形成层细胞位于维管组织的最深层,为提高农杆菌浸染效率,本研究采用纳米刷对子叶外植体表面均匀造伤,接着超声波和真空渗透压3个处理方式组合,其中在纳米刷造伤后进行超声波处理20 s,-1.0 kPa真空渗透压力下处理90 s后,绿色荧光蛋白(GFP)标记显示在甜瓜外植体的转化效率为82%~95%,在不定芽诱导培养基(SIM,1 mg/L 6-BA和 1 mg/L ABA)能产生再生苗的外植体率为3%~10%。研究了GROWTH-REGULATING FACTOR5 (AtGRF5)、WUSHEL(AtWUS)、PLETHORA(AtPLT5)、WOUND INDUCED DEDIFFERENTIATION 1(AtWIND1)等发育调控因子(DRs)对甜瓜遗传转化再生的作用,选择4种甜瓜优良自交系种质转化含有DRs表达组件的遗传转化载体,之后在低浓度细胞分裂素的培养基上诱导不定芽再生,试验结果显示,超表达AtGRF5和AtPLT5能够提高转化率以及接种外植体的再生芽率。因此,开发并利用DRs能够有效改良甜瓜的遗传转化率,进而促进基因组编辑等生物技术在甜瓜育种中的应用。
Abstract:
-

参考文献/References:

[1]Castanera R,Ruggieri V,Pujol M,et al. An improved melon reference genome with single-molecule sequencing uncovers a recent burst of transposable elements with potential impact on genes[J]. Frontiers in Plant Science,2020,10:1815.
[2]Ma L L,Wang Q,Zheng Y Y,et al. Cucurbitaceae genome evolution,gene function and molecular breeding[J]. Horticulture Research,2022,9:uhab057.
[3]陈学进,韩涛,姜立娜,等. 南瓜属作物遗传转化研究进展[J]. 中国瓜菜,2020,33(1):1-6.
[4]Anjanappa R B,Gruissem W. Current progress and challenges in crop genetic transformation[J]. Journal of Plant Physiology,2021,261:153411.
[5]Kausch A P,Nelson-Vasilchik K,Hague J,et al. Edit at will:genotype independent plant transformation in the era of advanced genomics and genome editing[J]. Plant Science:an International Journal of Experimental Plant Biology,2019,281:186-205.
[6]栾非时,白晶,朱子成,等. 农杆菌介导薄皮甜瓜遗传转化体系建立[J]. 东北农业大学学报,2019,50(1):11-18.
[7]Pan W B,Cheng Z T,Han Z G,et al. Efficient genetic transformation and CRISPR/Cas9-mediated genome editing of watermelon assisted by genes encoding developmental regulators[J]. Journal of Zhejiang University-SCIENCE B,2022,23(4):339-344.
[8]Xin T X,Tian H J,Ma Y L,et al. Targeted creating new mutants with compact plant architecture using CRISPR/Cas9 genome editing by an optimized genetic transformation procedure in cucurbit plants[J]. Horticulture Research,2022,9:uhab086.
[9]Debernardi J M,Tricoli D M,Ercoli M F,et al. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants[J]. Nature Biotechnology,2020,38(11):1274-1279.
[10]Kong J X,Martin-Ortigosa S,Finer J,et al. Overexpression of the transcription factor GROWTH-REGULATING FACTOR5 improves transformation of dicot and monocot species[J]. Frontiers in Plant Science,2020,11:572319.
[11]Lowe K,Wu E,Wang N,et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation[J]. The Plant Cell,2016,28(9):1998-2015.
[12]Méndez-Hernández H A,Ledezma-Rodríguez M,Avilez-Montalvo R N,et al. Signaling overview of plant somatic embryogenesis[J]. Frontiers in Plant Science,2019,10:77.
[13]Zhang X Y,Xu G C,Cheng C H,et al. Establishment of an Agrobacterium-mediated genetic transformation and CRISPR/Cas9-mediated targeted mutagenesis in hemp (Cannabis Sativa L.)[J]. Plant Biotechnology Journal,2021,19(10):1979-1987.
[14]Feng Q,Xiao L,He Y Z,et al. Highly efficient,genotype-independent transformation and gene editing in watermelon (Citrullus lanatus) using a chimeric ClGRF4-GIF1 gene[J]. Journal of Integrative Plant Biology,2021,63(12):2038-2042.
[15]Ikeuchi M,Iwase A,Rymen B,et al. Wounding triggers callus formation via dynamic hormonal and transcriptional changes[J]. Plant Physiology,2017,175(3):1158-1174.
[16]Iwase A,Kondo Y,Laohavisit A,et al. WIND transcription factors orchestrate wound-induced callus formation,vascular reconnection and defense response in Arabidopsis[J]. The New Phytologist,2021,232(2):734-752.
[17]Radhakrishnan D,Shanmukhan A P,Kareem A,et al. A coherent feed forward loop drives vascular regeneration in damaged aerial organs growing in normal developmental context[J]. Development,2020,147(6):185710-185748.
[18]Ahsan N,Lee S H,Lee D G,et al. The effects of wounding type,preculture,infection method and cocultivation temperature on the Agrobacterium-mediated gene transfer in tomatoes[J]. Annals of Applied Biology,2007,151(3):363-372.
[19]Benedicte A,Lucas O,Le Gall V,et al. Pectolytic enzyme treatment of sunflower explants prior to wounding and cocultivation with Agrobacterium tumefaciens,enhances efficiency of transient β-glucuronidase expression[J]. Physiologia Plantarum,2002,106(2):232-237.
[20]Mizuno K,Takahashi W,Ohyama T,et al. Improvement of the aluminum borate whisker-mediated method of DNA delivery into rice callus[J]. Plant Production Science,2004,7(1):45-49.
[21]Dan Y H,Armstrong C L,Dong J,et al. Lipoic acid-a unique plant transformation enhancer[J]. In Vitro Cellular & Developmental Biology-Plant,2009,45(6):630-638.
[22]Navari-Izzo F,Quartacci M F,Sgherri C. Lipoic acid:a unique antioxidant in the detoxification of activated oxygen species[J]. Plant Physiology and Biochemistry,2002,40(6/7/8):463-470.
[23]Parrott D L,Anderson A J,Carman J G. Agrobacterium induces plant cell death in wheat (Triticum aestivum L.)[J]. Physiological and Molecular Plant Pathology,2002,60(2):59-69.
[24]Uchendu E E,Muminova M,Gupta S,et al. Antioxidant and anti-stress compounds improve regrowth of cryopreserved Rubus shoot tips[J]. In Vitro Cellular & Developmental Biology-Plant,2010,46(4):386-393.
[25]Dan Y H,Zhang S,Zhong H,et al. Novel compounds that enhance Agrobacterium-mediated plant transformation by mitigating oxidative stress[J]. Plant Cell Reports,2015,34(2):291-309.
[26]Raman V,Rojas C M,Vasudevan B,et al. Agrobacterium expressing a type Ⅲ secretion system delivers Pseudomonas effectors into plant cells to enhance transformation[J]. Nature Communications,2022,13:2581-2595.
[27]Altpeter F,Springer N M,Bartley L E,et al. Advancing crop transformation in the era of genome editing[J]. The Plant Cell,2016,28(7):1510-1520.
[28]Ikeuchi M,Favero D S,Sakamoto Y,et al. Molecular mechanisms of plant regeneration[J]. Annual Review of Plant Biology,2019,70:377-406.
[29]Ikeuchi M,Ogawa Y,Iwase A,et al. Plant regeneration:cellular origins and molecular mechanisms[J]. Development,2016,143(9):1442-1451.
[30]Maher M F,Nasti R A,Vollbrecht M,et al. Plant gene editing through de novo induction of meristems[J]. Nature Biotechnology,2020,38(1):84-89.
[31]Heidmann I,de Lange B,Lambalk J,et al. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor[J]. Plant Cell Reports,2011,30(6):1107-1115.
[32]Kareem A,Durgaprasad K,Sugimoto K,et al. PLETHORA genes control regeneration by a two-step mechanism[J]. Current Biology,2015,25(8):1017-1030.
[33]Shin J,Bae S,Seo P J.De novo shoot organogenesis during plant regeneration[J]. Journal of Experimental Botany,2019,71(1):63-72.
[34]Iwase A,Harashima H,Ikeuchi M,et al. WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis[J]. The Plant Cell,2016,29(1):54-69.

相似文献/References:

[1]夏瑾华,喻慧荣,邹如意,等.6-BA、赤霉素和水杨酸对甜瓜种子萌发的影响[J].江苏农业科学,2015,43(12):204.
 Xia Jinhua,et al.Effects of 6-BA,GA3 and SA on seed germination of muskmelon[J].Jiangsu Agricultural Sciences,2015,43(7):204.
[2]吕琛,李锋霞,马本学,等.甜瓜成熟度检测技术研究进展[J].江苏农业科学,2014,42(01):244.
 Lv Chen,et al.Research progress of detection technology for maturity of Cucumis melo[J].Jiangsu Agricultural Sciences,2014,42(7):244.
[3]艾子凌,高鹏,杜黎黎,等.利用CAPS初步定位甜瓜MR-1白粉病抗性基因[J].江苏农业科学,2016,44(06):66.
 Ai Ziling,et al.Location of powdery mildew resistant gene using CAPS makers in melon MR-1[J].Jiangsu Agricultural Sciences,2016,44(7):66.
[4]邢卫峰,于侦云,陈刘军,等.生物肥料“宁盾”对甜瓜枯萎病的防治效果[J].江苏农业科学,2014,42(03):78.
 Xing Weifeng,et al.Control effect of biological fertilizer “Ningdun” on Fusarium oxysporum f. sp. melonis[J].Jiangsu Agricultural Sciences,2014,42(7):78.
[5]王爱玲,张敏,郑贺云,等.甜瓜红心脆和早皇后再生体系的建立[J].江苏农业科学,2015,43(11):82.
 Wang Ailing,et al.Establishment of regeneration system of sweet melon “Hongxincui” and “Zaohuanghou”[J].Jiangsu Agricultural Sciences,2015,43(7):82.
[6]王洋洋,袁丽伟,盛云燕.航天诱变甜瓜的形态学变异[J].江苏农业科学,2015,43(10):203.
 Wang Yangyang,et al.Morphological variation of melon with space mutation[J].Jiangsu Agricultural Sciences,2015,43(7):203.
[7]齐付国,刘小飞,孙景生.不同供水水平对间作甜瓜叶片活性氧代谢及光合特性的影响[J].江苏农业科学,2015,43(09):199.
 Qi Fuguo,et al.Effects of different water treatments on active oxygen metabolism and photosynthetic characteristics of intercropping melon leaf[J].Jiangsu Agricultural Sciences,2015,43(7):199.
[8]薛婷婷,韩梅琳,孙晓红,等.菌糠西瓜、甜瓜育苗试验[J].江苏农业科学,2015,43(04):191.
 Xue Tingting,et al.Seedling nursing test of watermelon and muskmelon using mushroom residue[J].Jiangsu Agricultural Sciences,2015,43(7):191.
[9]贺玉花,徐永阳,徐志红,等.甜瓜霜霉病抗性基因的SSR标记[J].江苏农业科学,2014,42(07):54.
 He Yuhua,et al.SSR markers linked to downy mildew resistant gene in melon[J].Jiangsu Agricultural Sciences,2014,42(7):54.
[10]闫洪朗,王康,何林池,等.江苏省甜瓜新品种主要形态性状的遗传多样性及相关性分析[J].江苏农业科学,2018,46(07):121.
 Yan Honglang,et al.Phenotypic diversity and correlation analysis of major morphological characters of new melon cultivars in Jiangsu Province[J].Jiangsu Agricultural Sciences,2018,46(7):121.

备注/Memo

备注/Memo:
收稿日期:2022-07-03
基金项目:湖北省重点研发项目(编号:2021BBA101、2022BBA0062);天山创新团队计划(编号:2022D14015);武汉市农业科学院创新项目(编号:XKCX202204-1);武汉市生物育种关键技术及新品种培育重大专项(2022021302024852)。
作者简介:万丽丽(1982—),女,湖北武汉人,博士,副研究员,主要从事蔬菜作物生物技术育种。E-mail:wanlili13226@163.com。
通信作者:汤谧,博士,高级农艺师,主要从事西甜瓜新品种研究、选育及推广。E-mail:xtgyjs@wuhanagri.com。
更新日期/Last Update: 2023-04-05