|本期目录/Table of Contents|

[1]闫强,胡亚群,薛冬,等.基于绿豆发状根的快速CRISPR/Cas9基因编辑方法[J].江苏农业科学,2023,51(10):48-53.
 Yan Qiang,et al.Rapid CRISPR/Cas9 gene editing method based on hairy roots of mung bean[J].Jiangsu Agricultural Sciences,2023,51(10):48-53.
点击复制

基于绿豆发状根的快速CRISPR/Cas9基因编辑方法(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第10期
页码:
48-53
栏目:
生物技术
出版日期:
2023-05-20

文章信息/Info

Title:
Rapid CRISPR/Cas9 gene editing method based on hairy roots of mung bean
作者:
闫强胡亚群薛冬周琰琰丁佩韦雅雯袁星星陈新
江苏省农业科学院经济作物研究所/江苏省高效园艺作物遗传改良重点实验室,江苏南京 210014
Author(s):
Yan Qianget al
关键词:
绿豆CRISPR/Cas9基因编辑发状根转化遗传转化绿色荧光蛋白
Keywords:
-
分类号:
S522.01
DOI:
-
文献标志码:
A
摘要:
由于缺乏有效稳定的遗传转化体系,导致基因编辑技术在绿豆中的应用受到极大限制,也使绿豆基因功能研究受到极大阻碍。因此,建立一套基于发根农杆菌的操作简便、快速且高效的绿豆嵌合植株转化技术,可以为绿豆基因功能研究提供技术支撑。首先在CRISPR/Cas9载体骨架中插入1个绿色荧光蛋白(green fluorescent protein,GFP)表达框用于阳性发状根的快速筛选,然后将含有靶标基因gRNA的CRISPR/Cas9质粒导入发根农杆菌K599。菌液注射侵染绿豆幼苗植株下胚轴,评价K599在绿豆中诱导发状根发生及CRISPR/Cas9系统在绿豆转基因发状根组织中的效率。结果显示,K599菌液侵染种植7 d的绿豆幼苗植株并在保湿条件下培养3周可在侵染点诱导发状根产生,此嵌合植株在切除原生根后可在霍格兰培养液中正常生长且培养1周后即可用于后续检测。用GFP筛选的结果显示,阳性发状根占比约为(57.8±10.0)%。随机选择15个荧光检测阳性的转基因发状根组织,利用测序检测靶位点的编辑效果,结果显示有10个靶位点的序列发生了突变,突变比例达到67%,其中碱基缺失突变9个,碱基转换突变1个。由本研究结果可知,利用该方法可以在无菌组织培养的条件下于4周内获得目的基因编辑的转基因组织,极大地便利了绿豆分子水平上的功能研究,也为其他尚缺乏稳定遗传转化体系的作物进行基因功能研究提供了参考。
Abstract:
-

参考文献/References:

[1]程须珍. 绿豆生产技术[M]. 北京:北京教育出版社,2016:11-12.
[2]Keatinge J D H,Easdown W J,Yang R Y,et al. Overcoming chronic malnutrition in a future warming world:the key importance of mungbean and vegetable soybean[J]. Euphytica,2011,180(1):129-141.
[3]刘耀光,李构思,张雅玲,等. CRISPR/Cas植物基因组编辑技术研究进展[J]. 华南农业大学学报,2019,40(5):46-57.
[4]Xie K B,Yang Y N. RNA-guided genome editing in plants using a CRISPR-Cas system[J]. Molecular Plant,2013,6(6):1975-1983.
[5]Demirci Y,Zhang B H,Unver T. CRISPR/Cas9:an RNA-guided highly precise synthetic tool for plant genome editing[J]. Journal of Cellular Physiology,2018,233(3):1844-1859.
[6]Shah T,Andleeb T,Lateef S,et al. Genome editing in plants:advancing crop transformation and overview of tools[J]. Plant Physiology and Biochemistry,2018,131:12-21.
[7]张瑞,高彩霞. 基于双碱基编辑系统的植物基因靶向随机突变技术[J]. 植物学报,2021,56(1):50-55.
[8]Li Z S,Liu Z B,Xing A Q,et al. Cas9-guide RNA directed genome editing in soybean[J]. Plant Physiology,2015,169(2):960-970.
[9]Wang L X,Wang L L,Tan Q,et al. Efficient inactivation of symbiotic nitrogen fixation related genes in Lotus japonicus using CRISPR-Cas9[J]. Frontiers in Plant Science,2016,7:1333.
[10]Ji J,Zhang C Y,Sun Z F,et al. Genome editing in cowpea Vigna unguiculata using CRISPR-Cas9[J]. International Journal of Molecular Sciences,2019,20(10):2471.
[11]Caas L A,Beltrán J P. Functional genomics in Medicago truncatula[M]New York:Humana Press,2018,1822:161-174.
[12]Jaiwal P K,Kumari R,Ignacimuthu S,et al. Agrobacterium tumefaciens-mediated genetic transformation of mungbean (Vigna radiata L. Wilczek)-a recalcitrant grain legume[J]. Plant Science,2001,161(2):239-247.
[13]Mahalakshmi L S,Leela T,Kumar S M,et al. Enhanced genetic transformation efficiency of mungbean by use of primary leaf explants[J]. Current Science,2006,91(1):93-99.
[14]Sahoo D P,Kumar S,Mishra S,et al. Enhanced salinity tolerance in transgenic mungbean overexpressing Arabidopsis antiporter (NHX1) gene[J]. Molecular Breeding,2016,36(10):144.
[15]苏钺凯,邱镜仁,张晗,等. CRISPR/Cas9系统在植物基因组编辑中技术改进与创新的研究进展[J]. 植物学报,2019,54(3):385-395.
[16]谢先荣,曾栋昌,谭健涛,等. 基于CRISPR编辑系统的DNA片段删除技术[J]. 植物学报,2021,56(1):44-49.
[17]朱丽珍,王芳,王娅丽,等. 基因编辑技术及CRISPR/Cas系统在草地植物开发中的应用[J]. 江苏农业科学,2021,49(20):22-30.
[18]Du H Y,Zeng X R,Zhao M,et al. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9[J]. Journal of Biotechnology,2016,217:90-97.
[19]Makhzoum A B,Sharma P,Bernards M A,et al. Hairy roots: an ideal platform for transgenic plant production and other promising applications[M]//Gang D. Phytochemicals,plant growth,and the environment. New York:Springer,2012:95-142.
[20]Kereszt A,Li D X,Indrasumunar A,et al. Agrobacterium rhizogenes-mediated transformation of soybean to study root biology[J]. Nature Protocols,2007,2(4):948-952.
[21]Estrada-Navarrete G,Alvarado-Affantranger X,Olivares J E,et al. Fast,efficient and reproducible genetic transformation of Phaseolus spp. by Agrobacterium rhizogenes[J]. Nature Protocols,2007,2(7):1819-1824.

相似文献/References:

[1]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统 作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[2]张新,肖亚静,于春生,等.桃色顶孢霉代谢物对绿豆田土壤酶及微生物的影响[J].江苏农业科学,2015,43(12):163.
 Zhang Xin,et al.Effects of Acremonium persicinum fermentation liquid on soil enzymes and microorganisms in mung bean field[J].Jiangsu Agricultural Sciences,2015,43(10):163.
[3]程彦伟,丁贺,韩建明,等.天然油菜素内酯对豆类种子发芽和胚根下胚轴伸长的影响[J].江苏农业科学,2014,42(09):140.
 Cheng Yanwei,et al.Effects of natural brassinolide on seed germination and radicle and hypocotyls elongation of beans[J].Jiangsu Agricultural Sciences,2014,42(10):140.
[4]张会娟,胡志超,吕小莲,等.我国绿豆加工利用概况与发展分析[J].江苏农业科学,2014,42(01):234.
 Zhang Huijuan,et al.Analysis of general situation and development of Chinas processing and utilization of mung beans[J].Jiangsu Agricultural Sciences,2014,42(10):234.
[5]郝荣华,张晓元,刘飞,等.不同分子量γ-聚谷氨酸对绿豆萌发及幼苗的影响[J].江苏农业科学,2016,44(06):169.
 Hao Ronghua,et al.Effects of γ-poly glutamic acid with different molecular weight on seed germination and seedling growth of mung bean[J].Jiangsu Agricultural Sciences,2016,44(10):169.
[6]冯翠,焦庆清,赵向阳,等.江苏地区绿豆新品种及栽培技术[J].江苏农业科学,2015,43(04):108.
 Feng Cui,et al.New cultivars and cultivation techniques of mung bean in Jiangsu area[J].Jiangsu Agricultural Sciences,2015,43(10):108.
[7]赵雅楠,王颖,张东杰.绿豆SSR-PCR反应体系的建立与优化[J].江苏农业科学,2017,45(08):23.
 Zhao Yanan,et al.Establishment and optimization of SSR-PCR reaction system for Vigna radiate L.[J].Jiangsu Agricultural Sciences,2017,45(10):23.
[8]赵雅楠,王颖,张东杰,等.小豆SSR-PCR反应体系优化及引物筛选[J].江苏农业科学,2017,45(11):33.
 Zhao Ya'nan,et al.Optimization of SSR-PCR reaction system and primer screening of Vigna angularis[J].Jiangsu Agricultural Sciences,2017,45(10):33.
[9]尤双,曹洋,李村院,等.靶向兔肌肉生长抑制素基因CRISPR/Cas9载体的构建和活性分析[J].江苏农业科学,2018,46(06):34.
 You Shuang,et al.Construction and activity analysis of targeted CRISPR/Cas9 MSTN gene vector[J].Jiangsu Agricultural Sciences,2018,46(10):34.
[10]李莉梅,欧阳乐军,尹爱国,等.1种大片段敲除巨桉细胞分裂素氧化酶基因的CRISPR载体构建[J].江苏农业科学,2018,46(12):19.
 Li Limei,et al.Construction of eucalyptus genome editing vector by using CRISPR/Cas9 system and knockout Klenow fragment of cytokinin oxidase/dehydrogenase gene[J].Jiangsu Agricultural Sciences,2018,46(10):19.

备注/Memo

备注/Memo:
收稿日期:2022-07-13
基金项目:国家重点研发计划(编号:2020YFD1000801、2020YFD1000805);现代农业产业技术体系专项资金(编号:CARS08-G15);江苏特粮特经产业技术体系集成创新中心项目(编号:JATS[2021]423);江苏省种业振兴揭榜挂帅项目(编号:JBGS[2021]004)。
作者简介:闫强(1986—),男,山东济宁人,博士,助理研究员,主要从事豆类作物抗病育种研究。E-mail:yanqiang@jaas.ac.cn。
通信作者:陈新,博士,研究员,主要从事豆类作物遗传育种研究。E-mail:cx@ja as.ac.cn。
更新日期/Last Update: 2023-05-20