|本期目录/Table of Contents|

[1]郭小丹,唐珊,余水静.脐橙根际解磷菌的分离鉴定及全基因组测序分析[J].江苏农业科学,2023,51(10):39-47.
 Guo Xiaodan,et al.Isolation,identification and genome sequencing analysis of phosphorus-solubilizing bacteria in rhizosphere of navel orange[J].Jiangsu Agricultural Sciences,2023,51(10):39-47.
点击复制

脐橙根际解磷菌的分离鉴定及全基因组测序分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第10期
页码:
39-47
栏目:
生物技术
出版日期:
2023-05-20

文章信息/Info

Title:
Isolation,identification and genome sequencing analysis of phosphorus-solubilizing bacteria in rhizosphere of navel orange
作者:
郭小丹12唐珊12余水静12
1.江西理工大学资源与环境工程学院,江西赣州 341000; 2.江西省矿冶环境污染控制重点实验室,江西赣州 341000
Author(s):
Guo Xiaodanet al
关键词:
脐橙根际解磷菌筛选分离解磷能力全基因组测序
Keywords:
-
分类号:
S154.3;S182
DOI:
-
文献标志码:
A
摘要:
高效解磷菌的分离,可促进实用型生物肥料的开发,是实现对作物的可持续性供磷以维护环境健康与土壤生产力的有力保障。以江西省赣州市某果园脐橙根际土壤作为试验材料,用平板筛选法筛选分离12株具有解磷能力的菌株,并结合钼锑抗比色法评估分离菌株的解磷能力,最终筛选出3株解磷菌(菌株编号为QCGJ-B01、QCGJ-B02、QCGJ-B04),这些菌株表现出高溶磷指数(范围为1.71~2.50)、强解磷能力(范围为280.75~317.48 mg/L)、低pH值(范围为4.08~4.77)。结果显示,pH值与解磷量呈负相关,表明酸化是3株解磷菌解磷的主要机制。对解磷能力最强的QCGJ-B01进行全基因组测序分析,并基于管家基因鉴定得出,QCGJ-B01是新洋葱伯克霍尔德菌。全基因组数据显示,QCGJ-B01的基因组大小为8 127 322 bp,G+C含量为66.98%,预测到7 425个基因,所有预测和注释的基因序列都分配到KEGG通路中,检测了有机酸合成与磷酸盐代谢相关基因。本研究发现,QCGJ-B01具有无机磷增溶基因(gdh、pqqB、pqqC、pqqD、pqqE、gltA)和磷酸盐转运系统基因(pstS、pstC、pstA、pstB、phoR-phoB、phoU)。此外,本研究还发现QCGJ-B01缺乏矿化磷酸酯的基因和编码磷酸酯转运蛋白的基因,可能使其无法利用额外的有机磷源,不利于其在不存在有效磷的环境中生存。QCGJ-B01高效的解磷能力有益于将其用作生物肥料,并且其全基因组数据有助于更好地理解其解磷性状的遗传基础。
Abstract:
-

参考文献/References:

[1]Azziz G,Bajsa N,Haghjou T,et al. Abundance,diversity and prospecting of culturable phosphate solubilizing bacteria on soils under crop-pasture rotations in a no-tillage regime in Uruguay[J]. Applied Soil Ecology,2012,61:320-326.
[2]Cozzolino V,Meo V D,Piccolo A. Impact of arbuscular mycorrhizal fungi applications on maize production and soil phosphorus availability[J]. Journal of Geochemical Exploration,2013,129:40-44.
[3]池景良,郝敏,王志学,等. 解磷微生物研究及应用进展[J]. 微生物学杂志,2021,41(1):1-7.
[4]Khan M S,Zaidi A,Ahemad M,et al. Plant growth promotion by phosphate solubilizing fungi-current perspective[J]. Archives of Agronomy and Soil Science,2010,56(1):73-98.
[5]Zou X M,Binkley D,Doxtader K G. A new method for estimating gross phosphorus mineralization and immobilization rates in soils[J]. Plant & Soil,1992,147(2):243-250.
[6]张艺灿,刘凤之,王海波. 根际溶磷微生物促生机制研究进展[J]. 中国土壤与肥料,2020(2):1-9.
[7]Takahashi S,Anwar M R. Wheat grain yield,phosphorus uptake and soil phosphorus fraction after 23 years of annual fertilizer application to an Andosol[J]. Field Crops Research,2007,101(2):160-171.
[8]da Costa E M,de Lima W,Oliveira-Longatti S M,et al. Phosphate-solubilising bacteria enhance Oryza sativa growth and nutrient accumulation in an oxisol fertilized with rock phosphate[J]. Ecological Engineering,2015,83:380-385.
[9]Roberts T L,Johnston A E. Phosphorus use efficiency and management in agriculture[J]. Resources Conservation and Recycling,2015,105(B):275-281.
[10]Chang C H,Yang S S. Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation[J]. Bioresource Technology,2009,100(4):1648-1658.
[11]苏奇倩,徐其静,丁豪杰,等. 微生物解磷特性及其铅污染土壤修复应用[J]. 环境科学与技术,2020,43(12):177-184.
[12]Meena V S,Meena S K,Verma J P,et al. Plant beneficial rhizospheric microorganism(PBRM)strategies to improve nutrients use efficiency:a review[J]. Ecological Engineering,2017,107:8-32.
[13]Alori E T,Glick B R,Babalola O O. Microbial phosphorus solubilization and its potential for use in sustainable agriculture[J]. Frontiers in Microbiology,2017,8:971.
[14]秦利均,杨永柱,杨星勇. 土壤溶磷微生物溶磷、解磷机制研究进展[J]. 生命科学研究,2019,23(1):59-64,86.
[15]Henry H,Naujokas M F,Attanayake C,et al. Bioavailability-based in situ remediation to meet future lead (Pb) standards in urban soils and gardens[J]. Environmental Science and Technology,2015,49(15):8948-8958.
[16]范丙全,刘巧玲. 保护性耕作与秸秆还田对土壤微生物及其溶磷特性的影响[J]. 中国生态农业报,2005,13(3):130-132.
[17]Richardson A E,Barea J M,McNeill A M,et al. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms[J]. Plant & Soil,2009,321(1/2):305-339.
[18]Richardson A E,Simpson R J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus [J]. Plant Physiology,2011,156(3):989-996.
[19]Dixit S,Kuttan K K A,Shrivastava R. Isolation and characterization of phosphorus solubilizing bacteria from manganese mining area of Balaghat and Chhindwara[J]. Current Science,2017,113(3):500-504.
[20]Kaur G,Reddy M S. Effects of phosphate-solubilizing bacteria,rock phosphate and chemical fertilizers on maize-wheat cropping cycle and economics[J]. Pedosphere,2015,25(3):428-437.
[21]Paul D,Sinha S N. Bacteria showing phosphate solubilizing efficiency in river sediment[J]. Electronic Journal of Biosciences,2013,1(1):1-5.
[22]Pereira S I A,Castro P M L. Phosphate-solubilizing rhizobacteria enhance Zea mays growth in agricultural P-deficient soils[J]. Ecological Engineering,2014,73:526-535.
[23]周亮亮. 柑橘溃疡病生防菌Bacillus velezensis QC-J全基因组测序及比较基因组学分析[D]. 赣州:江西理工大学,2021:7-10.
[24]马锦锦. 枸杞根际促生细菌筛选、培养基优化及基因组测序[D]. 泰安:山东农业大学,2017:17-23.
[25]Liu F P. Liu H Q,Zhou H L,et al. Isolation and characterization of phosphate-solubilizing bacteria from betel nut (Areca catechu) and their effects on plant growth and phosphorus mobilization in tropical soils[J]. Biology & Fertility of Soils,2014,50(6):927-937.
[26]乔策策,王甜甜,王若斐,等. 高效溶磷菌的筛选及其促生效应研究[J]. 南京农业大学学报,2017,40(4):664-670.
[27]Zaidi A,Khan M S,Ahemad M,et al. Plant growth promotion by phosphate solubilizing bacteria[J]. Acta Microbiologicaet Immunologica Hungarica,2009,56(3):263-284.
[28]Liu Z,Li Y C,Zhang S,et al. Characterization of phosphate-solubilizing bacteria isolated from calcareous soils[J]. Applied Soil Ecology,2015,96:217-224.
[29]黄静,盛下放,何琳燕. 具溶磷能力的植物内生促生细菌的分离筛选及其生物多样性[J]. 微生物学报,2010,50(6):710-716.
[30]Iyer B,Rajkumar S. Genome sequence and comparative genomics of Rhizobium sp. Td3,a novel plant growth promoting phosphate solubilizing Cajanus cajan symbiont[J]. Microbiological Research,2018,218:32-40.
[31]Liu W X,Wang Q L,Hou J Y,et al. Whole genome analysis of halotolerant and alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp. D5A[J]. Scientific Reports,2016,6:26710.
[32]Misra H S,Rajpurohit Y S,Khairnar N P. Pyrroloquinoline-quinone and its versatile roles in biological processes[J]. Journal of Biosciences,2012,37(2):313-325.
[33]Toyama H,Lidstrom M E. pqqA is not required for biosynthesis of pyrroloquinoline quinone in Methylobacterium extorquens AM1[J]. Microbiology,1998,144(1),183-191.
[34]Shariati J V,Malboobi M A,Tabrizi Z,et al. Comprehensive genomic analysis of a plant growth-promoting rhizobacterium Pantoea agglomerans strain P5[J]. Scientific Reports,2017,7(1):1-12.
[35]Santos-Beneit F. The Pho regulon:a huge regulatory network in bacteria[J]. Frontiers in Microbiology,2015,6:402.
[36]Panhwar Q A,Othman R,Abdul R Z,et al. Isolation and characterization of phosphate solubilizing bacteria from aerobic rice[J]. Afr J Biotechnol,2012,11(11):2711-2719.
[37]Qian Y C,Shi J Y,Chen Y X,et al. Characterization of phosphate solubilizing bacteria in sediments from a shallow eutrophic lake and a wetland:isolation,molecular identification and phosphorus release ability determination[J]. Molecules,2010,15(11):8518-8533.
[38]Pérez E,Sulbarán M,Ball M M,et al. Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region[J]. Soil Biology & Biochemistry,2007,39(11):2905-2914.
[39]Chen Y P,Rekha P D,Arun A B,et al. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities[J]. Applied Soil Ecology,2006,34(1):33-41.
[40]Xiang W L,Liang H Z,Liu S,et al. Isolation and performance evaluation of halotolerant phosphate solubilizing bacteria from the rhizospheric soils of historic Dagong Brine Well in China[J]. World Journal of Microbiology and Biotechnology,2011,27(11):2629-2637.
[41]Sharma S B,Sayyed R Z,Trivedi M H,et al. Phosphate solubilizing microbes:sustainable approach for managing phosphorus deficiency in agricultural soils[J]. SpringerPlus,2013,2(1):587.
[42]管冠,郭等等,李倩磊,等. 生草栽培对纽荷尔脐橙根系生长土壤微生物群落的影响[J]. 江苏农业科学,2021,49(17):220-225.
[43]Zekic F,Weselowski B,Yuan Z C. Complete genome sequence of Burkholderia cenocepacia CR318,a phosphate-solubilizing bacterium isolated from corn root[J]. Genome Announcements,2017,5(23):e00490-17.
[44]Mannaa M,Park I,Seo Y S. Genomic features and insights into the taxonomy,virulence,and benevolence of plant-associated Burkholderia species[J]. International Journal of Molecular Sciences,2018,20(1):121.
[45]Peix A,Mateos P F,Rodriguez-Barrueco C,et al. Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions[J]. Soil Biology & Biochemistry,2001,33(14):1927-1935.
[46]Collavino M M,Sansberro P A,Mroginski L A,et al. Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth[J]. Biology and Fertility of Soils,2010,46(7):727-738.
[47]Kothamasi D,Kothamasi S,Bhattacharyya A,et al. Arbuscular mycorrhizae and phosphate solubilizing bacteria of the rhizosphere of the mangrove ecosystem of Great Nicobar island,India[J]. Biology and Fertility of Soils,2006,42(4):358-361.
[48]Kumar V,Behl R K,Narula N. Establishment of phosphate-solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under green house conditions[J]. Microbiological Research,2001,156(1):87-93.
[49]Lin T F,Huang H I,Shen F T,et al. The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-Al74[J]. Bioresource Technology,2006,97(7):957-960.
[50]You M,Fang S M,MacDonald J,et al. Isolation and characterization of Burkholderia cenocepacia CR318,a phosphate solubilizing bacterium promoting corn growth[J]. Microbiological Research,2019,233:126395.
[51]Behera B C,Singdevsachan S K,Mishra R R,et al. Diversity,mechanism and biotechnology of phosphate solubilising microorganism in mangrove:a review[J]. Biocatalysis & Agricultural Biotechnology,2014,3(2):97-100.
[52]Goldstein A H. Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria[M]//Torriani-Gorini A,Yagil E,Silver S. Phosphate in microorganisms:cellular and molecular biology. Washington DC:ASM Press,1994:197-203.

相似文献/References:

[1]潘训海.脐橙果酒澄清技术[J].江苏农业科学,2013,41(07):245.
 Pan Xunhai.Clarification techniques of navel orange wine[J].Jiangsu Agricultural Sciences,2013,41(10):245.
[2]时伟,常明,俱卫秀,等.脐橙果皮色素提取工艺条件研究[J].江苏农业科学,2013,41(09):241.
 Shi Wei,et al.Study on extraction technology of pigment from newhall navel orange peel[J].Jiangsu Agricultural Sciences,2013,41(10):241.
[3]徐华,刘婉华,姚萍萍,等.柑橘潜叶蛾危害对脐橙叶片几种生理指标的影响[J].江苏农业科学,2016,44(04):221.
 Xu Hua,et al.Effects of hazards of citrus leaf miner on several kinds of physiological indices of navel orange leaves[J].Jiangsu Agricultural Sciences,2016,44(10):221.
[4]邓志勇,吴桂容,杨程显.脐橙-石榴复合果酒酿造工艺的研究[J].江苏农业科学,2015,43(02):266.
 Deng Zhiyong,et al.Study on brewing technology of compound wine of navel orange and pomegranate[J].Jiangsu Agricultural Sciences,2015,43(10):266.
[5]陈永忠.加拿大一枝黄花乙醇提取物的抑菌效应及在脐橙保鲜中的应用[J].江苏农业科学,2018,46(21):200.
 Chen Yongzhong.Antibacterial effects of ethanol extracts from Solidago canadensis L. and their application in preservation of navel oranges[J].Jiangsu Agricultural Sciences,2018,46(10):200.
[6]张俊艳,林高山,张丽芳,等.基于3S技术的四川省脐橙适宜区分布研究[J].江苏农业科学,2019,47(22):284.
 Zhang Junyan,et al.Study on appropriate distribution of umbilical cord orange in Sichuan Province based on 3S technology[J].Jiangsu Agricultural Sciences,2019,47(10):284.
[7]王涛,史晓燕.东江源脐橙种植区径流污染生态拦截效应[J].江苏农业科学,2020,48(11):265.
 Wang Tao,et al.Ecological interception effects of runoff pollution in navel orange planting area of Dongjiang River Source[J].Jiangsu Agricultural Sciences,2020,48(10):265.
[8]朱婧,李倩磊,郭等等,等.不同施肥处理对纽荷尔脐橙根系生长及土壤生物学性质的影响[J].江苏农业科学,2021,49(10):96.
 Zhu Jing,et al.Impacts of fertilizer application modes on root growth and soil biological properties of Newhall navel orange[J].Jiangsu Agricultural Sciences,2021,49(10):96.
[9]陈蓉,姚锋先,杨忠兰,等.叶面硒生物营养强化对脐橙果实品质和元素积累的影响[J].江苏农业科学,2022,50(19):143.
 Chen Rong,et al.Impacts of foliar selenium biofortification on fruit quality and element accumulation in Newhall navel orange[J].Jiangsu Agricultural Sciences,2022,50(10):143.
[10]张圆圆,马金龙,管冠,等.缺钙和缺镁对脐橙幼苗生长及矿质养分吸收分配的影响[J].江苏农业科学,2023,51(4):171.
 Zhang Yuanyuan,et al.Effects of calcium deficiency and magnesium deficiency on growth and mineral nutrient absorption and distribution of young navel orange plants[J].Jiangsu Agricultural Sciences,2023,51(10):171.

备注/Memo

备注/Memo:
收稿日期:2022-07-12
基金项目:国家重点研发计划(编号:2019YFC1805100)。
作者简介:郭小丹(1998—),男,江西赣州人,硕士研究生,主要从事环境微生物研究。E-mail:GXD15779758580@163.com。
通信作者:余水静,博士,副教授,主要从事环境微生物研究。E-mail:yushuijing2008@163.com。
更新日期/Last Update: 2023-05-20