|本期目录/Table of Contents|

[1]殷嘉伟,范晓懂,常志杰,等.磷素亏缺和试验增温对番茄气孔特征、气体交换参数及果实产量的影响[J].江苏农业科学,2023,51(10):126-137.
 Yin Jiawei,et al.Impacts of phosphorus deficiency and experimental warming on stomatal characteristics, gas exchange parameters and fruit yield of tomatoes[J].Jiangsu Agricultural Sciences,2023,51(10):126-137.
点击复制

磷素亏缺和试验增温对番茄气孔特征、气体交换参数及果实产量的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第10期
页码:
126-137
栏目:
园艺与林学
出版日期:
2023-05-20

文章信息/Info

Title:
Impacts of phosphorus deficiency and experimental warming on stomatal characteristics, gas exchange parameters and fruit yield of tomatoes
作者:
殷嘉伟1范晓懂2常志杰3闫润杰3陈文娜1郝立华3
1.河北工程大学园林与生态工程学院,河北邯郸 056038; 2.西北农林科技大学水利与建筑工程学院,陕西杨凌 712100;3.河北工程大学水利水电学院,河北邯郸 056038
Author(s):
Yin Jiaweiet al
关键词:
试验增温磷素亏缺气孔特征气体交换番茄产量
Keywords:
-
分类号:
S641.201
DOI:
-
文献标志码:
A
摘要:
为探究土壤磷亏缺条件下试验增温对番茄生长发育过程及其产量的影响机理,以中杂9号番茄幼苗为试材,利用可精准控制温度的大型人工气候室,探讨不同温度条件(昼/夜温度为25 ℃/16 ℃ 和30 ℃/21 ℃)和供磷水平(0.004、0.012、0020、0.060、0.100、0.500 mmol/L)对番茄气孔特征、气体交换参数、植株生物量以及产量的影响。结果显示,增温使供磷水平为P0.02、P0.1和P0.5条件下叶片近轴面气孔密度分别增加92.6%、101.8%和39.4%,且导致供磷水平为P0.004条件下叶片近轴面气孔空间分布更加规则。另外,增温使供磷水平为P0.012、P0.02、P0.1和P0.5条件下番茄的净光合速率(Pn)显著增加97.4%、169.8%、273.7%和69.8%,同时还导致供磷水平为P0.012和P0.02的蒸腾速率(Tr)分别增加741%和164.8%,从而显著提高了P0.1供磷水平下番茄叶片的瞬时水分利用效率(WUEI)。上述研究结果表明,土壤磷素亏缺条件下,增温可以通过增加气孔密度和规则化气孔分布格局的方式优化番茄的气体交换效率,从而提高植株生物量、净光合速率及水分利用效率,在一定程度上缓解磷素亏缺对番茄生长过程造成的生理胁迫。研究结果将为深入理解气候变暖背景下番茄生理生态过程对土壤磷素亏缺的响应机理提供数据支撑和理论依据。
Abstract:
-

参考文献/References:

[1]Intergovernmental Panel on Climate Change. Climate change 2013:The physical science basis. Contribtion of working group Ⅰ to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press,2014.
[2]Meehl G A,Tebaldi C. More intense,more frequent,and longer lasting heat waves in the 21st century[J]. Science,2004,305(5686):994-997.
[3]杨金虎,江志红,王鹏祥,等. 中国年极端降水事件的时空分布特征[J]. 气候与环境研究,2008,13(1):75-83.
[4]Zandalinas S I,Mittler R,Balfagón D,et al. Plant adaptations to the combination of drought and high temperatures[J]. Physiologia Plantarum,2018,162(1):2-12.
[5]Hatfield J L,Boote K J,Kimball B A,et al. Climate impacts on agriculture:implications for crop production[J]. Agronomy Journal,2011,103(2):351-370.
[6]李苇,张其国,周旭丹,等. 模拟增温对玉米叶片生理特性及根区土壤特性的影响[J]. 江苏农业科学,2018,46(18):77-81.
[7]何春霖. 低磷供应下CO2浓度对黑麦草生理特性及水分利用率的影响[D]. 邯郸:河北工程大学,2021.
[8]Gao D C,Bai E,Li M H,et al. Responses of soil nitrogen and phosphorus cycling to drying and rewetting cycles:a meta-analysis[J]. Soil Biology and Biochemistry,2020,148:107896.
[9]Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes:a review[J]. Plant and Soil,2001,237(2):173-195.
[10]Gross M. Fears over phosphorus supplies[J]. Current Biology,2010,20(9):R386-R387.
[11]Abel S,Ticconi C A,Delatorre C A. Phosphate sensing in higher plants[J]. Physiologia Plantarum,2002,115(1):1-8.
[12]Lambers H,Shane M W,Cramer M D,et al. Root structure and functioning for efficient acquisition of phosphorus:matching morphological and physiological traits[J]. Annals of Botany,2006,98(4):693-713.
[13]Veneklaas E J,Lambers H,Bragg J,et al. Opportunities for improving phosphorus-use efficiency in crop plants[J]. New Phytologist,2012,195(2):306-320.
[14]Zhang X M,Zhang Q,Liang B,et al. Changes in the abundance and structure of bacterial communities in the greenhouse tomato cultivation system under long-term fertilization treatments[J]. Applied Soil Ecology,2017,121:82-89.
[15]靳琇,陈浩婷,石玉,等. 柠檬酸浸种引发对低磷胁迫下番茄幼苗生长及生理特性的影响[J]. 中国生态农业学报(中英文),2021,29(7):1159-1170.
[16]Kalaji H M,Oukarroum A,Alexandrov V,et al. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements[J]. Plant Physiology and Biochemistry,2014,81:16-25.
[17]杨春婷,张永清,董璐,等. 不同基因型苦荞幼苗对低磷胁迫的响应[J]. 植物科学学报,2018,36(6):859-867.
[18]王应祥,廖红,严小龙. 大豆适应低磷胁迫的机理初探[J]. 大豆科学,2003,22(3):208-212.
[19]Manoj-Kumar,Swarup A,Patra A K,et al. Effect of elevated CO2 and temperature on phosphorus efficiency of wheat grown in an Inceptisol of subtropical India[J]. Plant,Soil and Environment,2012,58(5):230-235.
[20]Suriyagoda L D B,Ryan M H,Renton M,et al. Adaptive shoot and root responses collectively enhance growth at optimum temperature and limited phosphorus supply of three herbaceous legume species[J]. Annals of Botany,2012,110(5):959-968.
[21]Singh S K,Reddy V R,Fleisher D H,et al. Phosphorus nutrition affects temperature response of soybean growth and canopy photosynthesis[J]. Frontiers in Plant Science,2018,9:1116.
[22]Duan H L,Ontedhu J,Milham P,et al. Effects of elevated carbon dioxide and elevated temperature on morphological,physiological and anatomical responses of Eucalyptus tereticornis along a soil phosphorus gradient[J]. Tree Physiology,2019,39(11):1821-1837.
[23]贝昭贤,张秋芳,郑蔚,等. 模拟增温对中亚热带杉木人工林土壤磷有效性的影响[J]. 生态学报,2018,38(3):1106-1113.
[24]武海霞,郭丽丽,郝立华,等. 水分和CO2浓度对冬小麦气孔特征、气体交换参数和生物量的影响[J]. 作物学报,2018,44(10):1570-1576.
[25]Zheng Y P,Xu M,Hou R X,et al. Effects of experimental warming on stomatal traits in leaves of maize (Zea may L.)[J]. Ecology and Evolution,2013,3(9):3095-3111.
[26]宗毓铮,张函青,李萍,等. 大气CO2与温度升高对北方冬小麦旗叶光合特性、碳氮代谢及产量的影响[J]. 中国农业科学,2021,54(23):4984-4995.
[27]李菲,刘亮,张浩,等. CO2浓度对大豆叶片气孔特征和气体交换参数的影响[J]. 作物学报,2018,44(8):1212-1220.
[28]王月,王鲁鑫,李浩天,等. 不同磷水平下CO2浓度升高对番茄光合特性和抗氧化酶活性的影响[J]. 江苏农业科学,2022,50(12):163-167.
[29]Chiera J,Thomas J,Rufty T. Leaf initiation and development in soybean under phosphorus stress[J]. Journal of Experimental Botany,2002,53(368):473-481.
[30]Jin J,Tang C X,Sale P. The impact of elevated carbon dioxide on the phosphorus nutrition of plants:a review[J]. Annals of Botany,2015,116(6):987-999.
[31]Ding G D,Zhao Z K,Liao Y,et al. Quantitative trait loci for seed yield and yield-related traits,and their responses to reduced phosphorus supply in Brassica napus[J]. Annals of Botany,2012,109(4):747-759.
[32]朱红芳,高璐,何小艳,等. 高温和淹水胁迫对不结球白菜纤维素相关酶活性的影响[J]. 分子植物育种,2022,20(15):5107-5114.
[33]郑云普,王贺新,娄鑫,等. 木本植物非结构性碳水化合物变化及其影响因子研究进展[J]. 应用生态学报,2014,25(4):1188-1196.
[34]徐一荻,刘春花,谢富,等. 供磷水平对核桃实生苗生长生理特性及酶活性的影响[J]. 西南林业大学学报(自然科学),2021,41(5):27-35.
[35]Wu T,Liu S Z,Lie Z Y,et al. Divergent effects of a 6-year warming experiment on the nutrient productivities of subtropical tree species[J]. Forest Ecology and Management,2020,461:117952.
[36]Qi Y L,Wei W,Chen C G,et al. Plant root-shoot biomass allocation over diverse biomes:a global synthesis[J]. Global Ecology and Conservation,2019,18:e00606.
[37]Xu M. The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum)[J]. Journal of Plant Physiology,2015,184:89-97.
[38]朱玉,黄磊,郑云普,等. 高温对高丛越橘叶片气孔特征和气体交换参数的影响[J]. 果树学报,2016,33(4):444-456.
[39]郑云普,常志杰,范晓懂,等. CO2浓度升高和磷素亏缺对黑麦草气孔特征及气体交换参数的影响[J]. 农业工程学报,2021,37(18):82-89.
[40]郭丽丽,张茜茜,郝立华,等. 大气CO2倍增条件下冬小麦气体交换对高温干旱及复水过程的响应[J]. 作物学报,2019,45(6):949-956.
[41]Soares A S,Driscoll S P,Olmos E,et al. Adaxial/abaxial specification in the regulation of photosynthesis and stomatal opening with respect to light orientation and growth with CO2 enrichment in the C4 species Paspalum dilatatum[J]. The New Phytologist,2008,177(1):186-198.
[42]张浩,郭丽丽,叶嘉,等. 樱桃番茄叶片气孔特征和气体交换过程对NaCl胁迫的响应[J]. 农业工程学报,2018,34(5):107-113.
[43]Lewis J D,Strain B R. The role of mycorrhizas in the response of Pinus taeda seedlings to elevated CO2[J]. New Phytologist,1996,133(3):431-443.
[44]潘璐,刘杰才,李晓静,等. 高温和加富CO2温室中黄瓜Rubisco活化酶与光合作用的关系[J]. 园艺学报,2014,41(8):1591-1600.
[45]Kimball B A,朱建国,程磊,等. 开放系统中农作物对空气CO2浓度增加的响应[J]. 应用生态学报,2002,13(10):1323-1338.
[46]廖建雄,王根轩. 干旱、CO2和温度升高对春小麦光合、蒸发蒸腾及水分利用效率的影响[J]. 应用生态学报,2002,13(5):547-550.
[47]叶旺敏,熊德成,杨智杰,等. 模拟增温对杉木幼树生长和光合特性的影响[J]. 生态学报,2019,39(7):2501-2509.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-07-05
基金项目:国家自然科学基金面上项目(编号:32071608);中央引导地方科技发展资金项目(编号:226Z6401G);河北省自然科学基金 (编号:E2021402031);河北省研究生创新资助项目(编号:CXZZSS2022023)。
作者简介:殷嘉伟(1996—),男,河北邯郸人,硕士研究生,研究方向为植物生理生态学相关研究。E-mail:yinjiawei909@163.com。
通信作者:郝立华,博士,讲师,研究方向为农业水土工程及全球变化生态学相关研究。E-mail:haolihua_000@sina.com。
更新日期/Last Update: 2023-05-20