|本期目录/Table of Contents|

[1]丁鹏,高月,谭小力,等.甘蓝型油菜BnaC.RECQ4B基因的生物信息学与组织表达分析[J].江苏农业科学,2023,51(12):57-64.
 Ding Peng,et al.Bioinformatics and tissue expression analysis of BnaC.RECQ4B gene in Brassica napus[J].Jiangsu Agricultural Sciences,2023,51(12):57-64.
点击复制

甘蓝型油菜BnaC.RECQ4B基因的生物信息学与组织表达分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第12期
页码:
57-64
栏目:
生物技术
出版日期:
2023-06-20

文章信息/Info

Title:
Bioinformatics and tissue expression analysis of BnaC.RECQ4B gene in Brassica napus
作者:
丁鹏高月谭小力朱克明
江苏大学生命科学学院,江苏镇江 212013
Author(s):
Ding Penget al
关键词:
甘蓝型油菜RECQ解旋酶生物信息学克隆基因表达量
Keywords:
-
分类号:
S634.301
DOI:
-
文献标志码:
A
摘要:
RECQ解旋酶是机体分子代谢途径中重要的调控蛋白,本研究为了探究甘蓝型油菜减数分裂中解旋酶RECQ的功能及其表达模式。首先,运用RT-PCR技术克隆获得1个甘蓝型油菜RECQ基因,并命名为BnaC.RECQ4B,运用PCR技术克隆获得BnaC.RECQ4B的启动子序列,命名为Pro.BnaC.RECQ4B;并对该基因编码的蛋白以及启动子序列进行生物信息学分析;最后,运用qRT-PCR技术对甘蓝型油菜不同组织进行基因表达量分析。结果表明,BnaC.RECQ4B开放阅读框(ORF)长度为3 477 bp,编码1 158个氨基酸,分子质量为18 086 u,等电点为8.38,属于亲水性不稳定碱性蛋白,可能是非分泌蛋白,蛋白质二级和三级结构显示无规则卷曲和α-螺旋所占比例较高,BnaC.RECQ4B与拟南芥的氨基酸序列相似性达到74%,该基因启动子不仅包含多种响应逆境胁迫的顺式元件,还包含大量的光反应与光响应相关调控元件,BnaC.RECQ4B在花苞、花中表达量较高,分别是根中的11.94、11.19倍;在叶、茎、角果中也有较高表达,分别是根中的10.50、4.73、5.93倍。上述结果初步表明,BnaC.RECQ4B具有解旋酶功能,可能参与植物体的DNA损伤修复等功能,为进一步探讨甘蓝型油菜BnaC.RECQ4B基因表达调控及作用机制提供了理论支持与实践基础。
Abstract:
-

参考文献/References:

[1]罗桂环. 中国油菜栽培起源考[J]. 古今农业,2015(3):23-28.
[2]李利霞,陈碧云,闫贵欣,等. 中国油菜种质资源研究利用策略与进展[J]. 植物遗传资源学报,2020,21(1):1-19.
[3]王汉中. 以新需求为导向的油菜产业发展战略[J]. 中国油料作物学报,2018,40(5):613-617.
[4]Lu K,Wei L J,Li X L,et al. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement[J]. Nature Communications,2019,10:1154.
[5]鲁飞. 保护种质资源 保障国家粮食安全[J]. 农经,2020(5):40-43.
[6]Fayos I,Mieulet D,Petit J,et al. Engineering meiotic recombination pathways in rice[J]. Plant Biotechnology Journal,2019,17(11):2062-2077.
[7]Blary A,Jenczewski E. Manipulation of crossover frequency and distribution for plant breeding[J]. Theoretical and Applied Genetics,2019,132(3):575-592.
[8]Séguéla-Arnaud M,Crismani W,Larchevêque C,et al. Multiple mechanisms limit meiotic crossovers:TOP3α and two BLM homologs antagonize crossovers in parallel to FANCM[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(15):4713-4718.
[9]Serra H,Lambing C,Griffin C H,et al. Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(10):2437-2442.
[10]朱永生,李汉仁,陈纪鹏. 芸薹属种内与种间杂种遗传学特征[J]. 江苏农业科学,2021,49(24):85-89.
[11]Székvlgyi L,Ohta K,Nicolas A.Initiation of meiotic homologous recombination:flexibility,impact of histone modifications,and chromatin remodeling[J]. Cold Spring Harbor Perspectives in Biology,2015,7(5):a016527.
[12]Blary A,Gonzalo A,Eber F,et al. FANCM limits meiotic crossovers in Brassica crops[J]. Frontiers in Plant Science,2018,9:368.
[13]Crismani W,Girard C,Froger N,et al. FANCM limits meiotic crossovers[J]. Science,2012,336(6088):1588-1590.
[14]Kaiser S,Sauer F,Kisker C. The structural and functional characterization of human RecQ4 reveals insights into its helicase mechanism[J]. Nature Communications,2017,8:15907.
[15]Singh D K,Ghosh A K,Croteau D L,et al. RecQ helicases in DNA double strand break repair and telomere maintenance[J]. Mutation Research,2012,736(1/2):15-24.
[16]Gupta S V,Schmidt K H. Maintenance of yeast genome integrity by RecQ family DNA helicases[J]. Genes,2020,11(2):205.
[17]Ruchert J M,Brady M M,McMahan S,et al. Blm helicase facilitates rapid replication of repetitive DNA sequences in early Drosophila development[J]. Genetics,2022,220(1):169.
[18]Garnier F,Debat H,Nadal M. Type IA DNA topoisomerases:a universal core and multiple activities[J]. Methods in Molecular Biology,2018,1703:1-20.
[19]Fu W Q,Ligabue A,Rogers K J,et al. Human RECQ helicase pathogenic variants,population variation and missing diseases[J]. Human Mutation,2017,38(2):193-203.
[20]Lu H M,Davis A J. Human RecQ helicases in DNA double-strand break repair[J]. Frontiers in Cell and Developmental Biology,2021,9:640755.
[21]Mieulet D,Aubert G,Bres C,et al. Unleashing meiotic crossovers in crops[J]. Nature Plants,2018,4(12):1010-1016.
[22]de Maagd R A,Loonen A,Chouaref J,et al. CRISPR/Cas inactivation of RECQ4 increases homeologous crossovers in an interspecific tomato hybrid[J]. Plant Biotechnology Journal,2020,18(3):805-813.
[23]Rezaei-Moshaei M,Bandehagh A,Dehestani A,et al. Molecular cloning and in-depth bioinformatics analysis of type Ⅱ ribosome-inactivating protein isolated from Sambucus ebulus[J]. Saudi Journal of Biological Sciences,2020,27(6):1609-1623.
[24]尹桂芳,段迎,杨晓琳,等. 苦荞FtC4H基因克隆与生物信息学分析[J]. 作物杂志,2022(1):77-83.
[25]刘成,冯中朝,肖唐华,等. 我国油菜产业发展现状、潜力及对策[J]. 中国油料作物学报,2019,41(4):485-489.
[26]殷艳,尹亮,张学昆,等. 我国油菜产业高质量发展现状和对策[J]. 中国农业科技导报,2021,23(8):1-7.
[27]Mercier R,Mézard C,Jenczewski E,et al. The molecular biology of meiosis in plants[J]. Annual Review of Plant Biology,2015,66:297-327.
[28]Mézard C,Jahns M T,Grelon M. Where to cross? New insights into the location of meiotic crossovers[J]. Trends in Genetics,2015,31(7):393-401.
[29]Hartung F,Puchta H. The RecQ gene family in plants[J]. Journal of Plant Physiology,2006,163(3):287-296.
[30]Das T,Pal S,Ganguly A. Human RecQ helicases in transcription-associated stress management:bridging the gap between DNA and RNA metabolism[J]. Biological Chemistry,2021,402(5):617-636.

相似文献/References:

[1]彭琦,张洁夫,张维,等.甘蓝型油菜裂角性快速鉴定的方法及其应用[J].江苏农业科学,2014,42(11):128.
 Peng Qi,et al(8).Rapid identification method of crack angle of Brassica napus and its application[J].Jiangsu Agricultural Sciences,2014,42(12):128.
[2]徐亮.青海不同海拔环境对甘蓝型油菜种子油脂和干物质积累的影响[J].江苏农业科学,2015,43(12):95.
 Xu Liang.Effects of altitude environment on oil and dry matter accumulation in Brassica napus seeds in Qinghai Province[J].Jiangsu Agricultural Sciences,2015,43(12):95.
[3]谢雅晶,武爱华,刘贤金.青杂5号甘蓝型油菜的高效再生及农杆菌侵染转化体系的建立[J].江苏农业科学,2015,43(12):17.
 Xie Yajing,et al.High efficiency regeneration and agrobacterium-mediated transformation system of Brassica napus L. “Qinza No.5” with insect resistant gene[J].Jiangsu Agricultural Sciences,2015,43(12):17.
[4]李爱民,张永泰,惠飞虎,等.杂交油菜新品种扬优10号的选育[J].江苏农业科学,2013,41(07):88.
 Li Aimin,et al.Breeding of new hybrid rapeseed cultivar “Yangyou No.10”[J].Jiangsu Agricultural Sciences,2013,41(12):88.
[5]李爱民,周德银,惠飞虎,等.大籽粒优质甘蓝型油菜新品种扬油9号的选育[J].江苏农业科学,2014,42(02):78.
 Li Aimin,et al.Breeding of new Brassica napus cultivar“Yangyou No.9” with big grains and high quality[J].Jiangsu Agricultural Sciences,2014,42(12):78.
[6]淡亚彬,杜德志.甘蓝型油菜心叶颜色性状的遗传和AFLP标记的筛选[J].江苏农业科学,2016,44(04):90.
 Dan Yabin,et al.Inheritance of central leaf color trait in Brassica napus and screening of AFLP markers for that trait[J].Jiangsu Agricultural Sciences,2016,44(12):90.
[7]付三雄,戚存扣,张洁夫,等.高产、高油甘蓝型油菜宁油22的选育与栽培要点[J].江苏农业科学,2016,44(02):111.
 Fu Sanxiong,et al.Breeding and cultivation techniques of Brassica napus “Ningyou 22” with high yield and high oil content[J].Jiangsu Agricultural Sciences,2016,44(12):111.
[8]张维,张洁夫,浦惠明,等.神舟十号搭载甘蓝型油菜种子SP1代性状调查[J].江苏农业科学,2015,43(09):130.
 Zhang Wei,et al.Trait investigation of SP1 generation of Brassica napus seed equipped in Shenzhou Ten[J].Jiangsu Agricultural Sciences,2015,43(12):130.
[9]马明莉,周文波,钟雪梅,等.外源水杨酸对干旱胁迫下甘蓝型油菜幼苗生理特性的影响[J].江苏农业科学,2015,43(06):84.
 Ma Mingli,et al.Effect of exogenous salicylic acid on physiological characteristics of Brassica napus L. seedlings under drought stress[J].Jiangsu Agricultural Sciences,2015,43(12):84.
[10]陈纪鹏,刘小林,胡月清.甘蓝型油菜与黑芥种间杂种基因组亲缘关系研究[J].江苏农业科学,2015,43(06):87.
 Chen Jipeng,et al.Study on genome affinity of interspecific hybrids between Brassica napus and B. nigra[J].Jiangsu Agricultural Sciences,2015,43(12):87.

备注/Memo

备注/Memo:
收稿日期:2022-08-09
基金项目:国家自然科学基金面上项目(编号:31671720)。
作者简介:丁鹏 (1998—),男,江西上饶人,硕士,从事油菜功能基因研究。E-mail:2212017003@stmail.ujs.edu.cn。
通信作者:朱克明,博士,副研究员,主要从事油菜功能基因研究。E-mail:uegzkg@sina.com。
更新日期/Last Update: 2023-06-20