|本期目录/Table of Contents|

[1]刘京鸽,吴结革,徐世永,等.南阳黑猪肌内脂质沉积相关lncRNA鉴定和功能预测[J].江苏农业科学,2023,51(12):149-157.
 Liu Jingge,et al.Identification and functional prediction of lncRNAs related to intramuscular lipid deposition in Nanyang black pigs[J].Jiangsu Agricultural Sciences,2023,51(12):149-157.
点击复制

南阳黑猪肌内脂质沉积相关lncRNA鉴定和功能预测(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第12期
页码:
149-157
栏目:
畜牧兽医与水产蚕桑
出版日期:
2023-06-20

文章信息/Info

Title:
Identification and functional prediction of lncRNAs related to intramuscular lipid deposition in Nanyang black pigs
作者:
刘京鸽吴结革徐世永陈清马凡华张金璧
金陵科技学院动物科学与食品工程学院,江苏南京 210038
Author(s):
Liu Jinggeet al
关键词:
南阳黑猪背最长肌lncRNA脂质代谢
Keywords:
-
分类号:
S828.2
DOI:
-
文献标志码:
A
摘要:
为了探讨长链非编码 RNA(Long non-coding RNA,lncRNA)在南阳黑猪肌内脂肪沉积中的重要作用,通过分析已发表的南阳黑猪高脂组和低脂组背最长肌转录组数据,通过编码潜能预测获得可能的lncRNA,结合DESeq2软件筛选出在南阳黑猪高脂组和低脂组背最长肌差异表达基因和lncRNA,并通过GO和KEGG 通路富集分析,找出与南阳黑猪肌内脂肪沉积相关的差异表达lncRNA。结果表明,通过编码潜能预测获得61个新的lncRNAs,新鉴定 lncRNAs和已知lncRNAs与编码基因相比较表现出一些典型特征,如转录本长度较短、外显子数较少。差异表达分析发现,814个编码基因和98个lncRNA在低脂和高脂组背最长肌间差异表达。差异表达的基因参与了多种与脂质代谢相关的信号通路,如甘油三脂代谢、PPAR信号通路、脂肪酸生物合成、脂肪酸降解等。联合差异表达lncRNAs的靶基因预测和差异表达基因结果分析表明,一些lncRNA可能作用于潜在的靶基因,参与脂质代谢过程,调控背最长肌脂质沉积。研究结果为进一步深入研究与猪脂质沉积相关的lncRNA生物学功能及调控机制奠定了基础,在未来育种中改善猪肉性状,促进猪的选择进程。
Abstract:
-

参考文献/References:

[1]Zou C,Li S,Deng L L,et al. Transcriptome analysis reveals long intergenic noncoding RNAs contributed to growth and meat quality differences between Yorkshire and wannanhua pig[J]. Genes,2017,8(8):203.
[2]Zhang K S,Huang K F,Luo Y P,et al. Identification and functional analysis of long non-coding RNAs in mouse cleavage stage embryonic development based on single cell transcriptome data[J]. BMC Genomics,2014,15(1):845.
[3]Ransohoff J D,Wei Y N,Khavari P A. The functions and unique features of long intergenic non-coding RNA[J]. Nature Reviews,Molecular Cell Biology,2018,19(3):143-157.
[4]Loewer S,Cabili M N,Guttman M,et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells[J]. Nature Genetics,2010,42(12):1113-1117.
[5]Prickett A R,Oakey R J. A survey of tissue-specific genomic imprinting in mammals[J]. Molecular Genetics and Genomics,2012,287(8):621-630.
[6]Zhang M,Li F,Sun J W,et al. LncRNA IMFNCR promotes intramuscular adipocyte differentiation by sponging miR-128-3p and miR-27b-3p[J]. Frontiers in Genetics,2019,10:42.
[7]Xiao F,Tang C Y,Tang H N,et al. Long non-coding RNA 332443 inhibits preadipocyte differentiation by targeting Runx1 and p38-MAPK and ERK1/2-MAPK signaling pathways[J]. Frontiers in Cell and Developmental Biology,2021,9:663959.
[8]Li P,Ruan X B,Yang L,et al. A liver-enriched long non-coding RNA,lncLSTR,regulates systemic lipid metabolism in mice[J]. Cell Metabolism,2015,21(3):455-467.
[9]Xing K,Zhu F,Zhai L W,et al. The liver transcriptome of two full-sibling Songliao black pigs with extreme differences in backfat thickness[J]. Journal of Animal Science and Biotechnology,2014,5(1):32.
[10]Li S J,Yang S H,Zhao S H,et al. Genetic diversity analyses of 10 indigenous Chinese pig populations based on 20 microsatellites[J]. Journal of Animal Science,2004,82(2):368-374.
[11]鲁云风,姚航航,曾涛,等. 南阳黑猪与大白猪活体背膘厚差异比较研究[J]. 养猪,2017(4):81-83.
[12]Qiao R,Li X,Han X,et al. Population structure and genetic diversity of four Henan pig populations[J]. Animal Genetics,2019,50(3):262-265.
[13]王明,霍晓婷,任广志. 不同品种猪肉矿物质元素含量研究[J]. 肉类工业,2008(4):34-36.
[14]鲁云风,张晓娜,曾涛. 南阳黑猪肉质性状相关基因筛选[J]. 黑龙江畜牧兽医,2017(18):61-63.
[15]Wang L Y,Zhang Y W,Zhang B,et al. Candidate gene screening for lipid deposition using combined transcriptomic and proteomic data from Nanyang black pigs[J]. BMC Genomics,2021,22(1):441.
[16]Chen L,Shi G L,Chen G T,et al. Transcriptome analysis suggests the roles of long intergenic non-coding RNAs in the growth performance of weaned piglets[J]. Frontiers in Genetics,2019,10:196.
[17]Shi G L,Chen L,Chen G T,et al. Identification and functional prediction of long intergenic non-coding RNAs related to subcutaneous adipose development in pigs[J]. Frontiers in Genetics,2019,10:160.
[18]Chen G T,Cheng X F,Shi G L,et al. Transcriptome analysis reveals the effect of long intergenic noncoding RNAs on pig muscle growth and fat deposition[J]. BioMed Research International,2019,2019:2951427.
[19]Love M I,Huber W,Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology,2014,15(12):550.
[20]Wu T Z,Hu E Q,Xu S B,et al. ClusterProfiler 4.0:a universal enrichment tool for interpreting omics data[J]. Innovation,2021,2(3):100141.
[21]Zou C,Li L,Cheng X F,et al. Identification and functional analysis of long intergenic non-coding RNAs underlying intramuscular fat content in pigs[J]. Frontiers in Genetics,2018,9:102.
[22]Gil N,Ulitsky I. Regulation of gene expression by cis-acting long non-coding RNAs[J]. Nature Reviews Genetics,2020,21(2):102-117.
[23]Zhou H Y,Simion V,Pierce J B,et al. LncRNA-MAP3K4 regulates vascular inflammation through the p38 MAPK signaling pathway and cis-modulation of MAP3K4[J]. FASEB Journal,2021,35(1):e21133.
[24]Szafranski P,Gambin T,Karolak J A,et al. Lung-specific distant enhancer cis regulates expression of FOXF1 and lncRNA FENDRR[J]. Human Mutation,2021,42(6):694-698.
[25]Degani N,Lubelsky Y,Perry R B T,et al. Highly conserved and cis-acting lncRNAs produced from paralogous regions in the center of HOXA and HOXB clusters in the endoderm lineage[J]. PLoS Genetics,2021,17(7):e1009681.
[26]Gabory A,Ripoche M A,Le Digarcher A,et al. H19 acts as a trans regulator of the imprinted gene network controlling growth in mice[J]. Development,2009,136(20):3413-3421.
[27]Yan P X,Luo S,Lu J Y,et al. Cis-and trans-acting lncRNAs in pluripotency and reprogramming[J]. Current Opinion in Genetics & Development,2017,46:170-178.
[28]Li J,Yang T T,Tang H F,et al. Inhibition of lncRNA MAAT controls multiple types of muscle atrophy by cis-and trans-regulatory actions[J]. Molecular Therapy,2021,29(3):1102-1119.
[29]Carmona S,Lin B,Chou T,et al. LncRNA Jpx induces Xist expression in mice using both trans and cis mechanisms[J]. PLoS Genetics,2018,14(5):e1007378.
[30]Wakil S J,Abu-Elheiga L A. Fatty acid metabolism:target for metabolic syndrome[J]. Journal of Lipid Research,2009,50(Suppl):S138-S143.
[31]Hunkeler M,Hagmann A,Stuttfeld E,et al. Structural basis for regulation of human acetyl-CoA carboxylase[J]. Nature,2018,558(7710):470-474.
[32]石学红. 牦牛ACACA基因遗传特征及其对乳、肉品质的影响[D]. 兰州:甘肃农业大学,2020:5-32.
[33]Ellis J M,Frahm J L,Li L O,et al. Acyl-coenzyme A synthetases in metabolic control[J]. Current Opinion in Lipidology,2010,21(3):212-217.
[34]张依迪,任亚轩,周军,等. ACSL4基因的功能及其研究进展[J]. 中国牛业科学,2020,46(5):52-58.
[35]Kuwata H,Hara S. Role of acyl-CoA synthetase ACSL4 in arachidonic acid metabolism[J]. Prostaglandins & Other Lipid Mediators,2019,144:106363
[36]梁计峻,林亚秋,俞雨阳,等. 山羊CPT1A基因的克隆表达及肌内脂肪含量的相关性分析[J]. 华北农学报,2019,34(5):231-238.
[37]Gobin S,Thuillier L,Jogl G,et al. Functional and structural basis of carnitine palmitoyltransferase 1A deficiency[J]. The Journal of Biological Chemistry,2003,278(50):50428-50434.
[38]Jakobsson A,Westerberg R,Jacobsson A. Fatty acid elongases in mammals:their regulation and roles in metabolism[J]. Progress in Lipid Research,2006,45(3):237-249.
[39]张小雪,赵利明,刘佳,等. 绵羊ELOVL5基因的生物信息学分析[J]. 甘肃农业科技,2022,53(4):24-29.
[40]Chirala S S,Wakil S J. Structure and function of animal fatty acid synthase[J]. Lipids,2004,39(11):1045-1053.
[41]张雄,史开志,张勇,等. 猪FASN基因表达与胴体及肉质性状相关性研究[J]. 黑龙江畜牧兽医,2021(9):64-67.
[42]关家伟,孙瑜彤,邱丽霞,等. 广灵驴SCD基因克隆、生物信息学及组织差异表达分析[J]. 山西农业大学学报(自然科学版),2021,41(2):65-73.
[43]王家麒,韩福慧,赵乐,等. miR-18b-3p靶向SCD调控绵羊前体脂肪细胞分化的研究[J]. 中国畜牧杂志,2021,57(5):117-123.
[44]吴东旺,孙丽媛,袁再美,等. 动物DGAT基因的研究进展[J]. 中国畜牧兽医,2019,46(7):1945-1952.
[45]邓章超,赵娟娟,夏琴,等. 陆川猪DGAT2基因克隆、序列分析及表达水平研究[J]. 黑龙江畜牧兽医,2019(21):6-10,17.
[46]李武峰,关家伟,孙瑜彤,等. 广灵驴DGAT2基因克隆、生物信息学分析及组织表达研究[J]. 中国畜牧兽医,2021,48(2):407-416.
[47]Murakami T,Sakane F,Imai S I,et al. Identification and characterization of two splice variants of human diacylglycerol kinase eta[J]. The Journal of Biological Chemistry,2003,278(36):34364-34372.
[48]Kai M,Sakane F,Imai S,et al. Molecular cloning of a diacylglycerol kinase isozyme predominantly expressed in human retina with a truncated and inactive enzyme expression in most other human cells[J]. The Journal of Biological Chemistry,1994,269(28):18492-18498.
[49]张月. 倒刺鲃PG、GK基因的克隆、时空表达及其在血糖调节中的作用初步研究[D]. 雅安:四川农业大学,2018:25-47.
[50]鄢胜飞,黄建芳,郭晓萍,等. 广西巴马小型猪GK基因真核表达载体的构建及鉴定[J]. 基因组学与应用生物学,2015,34(11):2351-2356.
[51]Shi Y G,Cheng D. Beyond triglyceride synthesis:the dynamic functional roles of MGAT and DGAT enzymes in energy metabolism[J]. American Journal of Physiology(Endocrinology and Metabolism),2009,297(1):E10-E18.
[52]田方圆,王台安,李艳敏,等. 鸡MOGAT和DGAT基因的克隆及表达特性研究[J]. 畜牧兽医学报,2017,48(2):214-224.
[53]Mostafa N,Bhat B G,Coleman R A.Increased hepatic monoacylglycerol acyltransferase activity in streptozotocin-induced diabetes:characterization and comparison with activities from adult and neonatal rat liver[J]. Biochimica et Biophysica Acta,1993,1169(2):189-195.
[54]Yen C L E,Farese R V Jr. MGAT2,a monoacylglycerol acyltransferase expressed in the small intestine[J]. The Journal of Biological Chemistry,2003,278(20):18532-18537.
[55]Cao J S,Lockwood J,Burn P,et al. Cloning and functional characterization of a mouse intestinal acyl-CoA:monoacylglycerol acyltransferase,MGAT2[J]. The Journal of Biological Chemistry,2003,278(16):13860-13866.
[56]苟圣松,林亚秋,王永,等. 山羊PNPLA3基因克隆及序列分析[J]. 中国畜牧杂志,2021,57(4):73-78.
[57]王晓倩. PNPLA3基因多态性及血清甘油三酯与脂肪肝的关联性研究[D]. 武汉:华中科技大学,2019:1-76.
[58]佟桂芝,刘学峰,李信涛,等. 羊血管生成素样蛋白4基因(ANGPTL4)与羊肌内脂肪含量关系的研究[J]. 现代畜牧科技,2020(9):1-3.
[59]侯彦茹,赵旭,黄华山,等. 鸡血管生成素样蛋白4重组蛋白对肉鸡肝脏和胸肌脂肪代谢的影响[J]. 动物营养学报,2022,34(2):1260-1267.
[60]赵希桐,潘永杰,张丰霞,等. 干扰ANGPTL4基因对3T3-L1前体脂肪细胞系成脂过程的影响研究[J]. 中国畜牧杂志,2021,57(S1):120-125.
[61]胡濒月,黄英,杨明华,等. PLIN2对脂类代谢的调控研究[J]. 中国医药科学,2018,8(15):40-43.
[62]吴俊静,阮航,乔木,等. 猪PLIN2基因变异筛选及其与猪肌内脂肪含量性状的关联分析[J]. 中国畜牧杂志,2021,57(S1):158-163.
[63]孙建富. PLIN2基因在油酸诱导延边牛骨骼肌卫星细胞成脂分化中的作用机制研究[D]. 延吉:延边大学,2021:1-54.
[64]李格. 低氧训练诱导AMPK对小鼠骨骼肌PPARα表达的影响[D]. 北京:北京体育大学,2014:1-46.
[65]徐文静. PPARa参与脂代谢通路与非酒精性脂肪性肝病[J]. 肝脏,2020,25(8):894-896.
[66]Chen Z,Torrens J I,Anand A,et al. Krox20 stimulates adipogenesis via C/EBPbeta-dependent and-independent mechanisms[J]. Cell Metabolism,2005,1(2):93-106.
[67]王杉杉. Gdf6和Egr2在多潜能干细胞向前脂肪细胞定向过程中的作用及机制研究[D]. 上海:复旦大学,2013:1-61.
[68]王学敏. 猪Sar1b基因的克隆、染色体定位、原核表达及其与部分性状的关联分析[D]. 武汉:华中农业大学,2005:1-57.
[69]王学敏,李碧侠,任守文. 猪Sar1b基因真核表达载体构建及鉴定[J]. 安徽农业大学学报,2007,34(4):573-576.
[70]Jones B,Jones E L,Bonney S A,et al. Mutations in a Sar1 GTPase of COPⅡ vesicles are associated with lipid absorption disorders[J]. Nature Genetics,2003,34(1):29-31.
[71]Ulitsky I,Shkumatava A,Jan C H,et al. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution[J]. Cell,2011,147(7):1537-1550.
[72]Nitsche A,Rose D,Fasold M,et al. Comparison of splice sites reveals that long noncoding RNAs are evolutionarily well conserved[J]. RNA,2015,21(5):801-812.

相似文献/References:

[1]张鑫,孙洪新,刘月,等.绵羊背最长肌组织中TMOD4基因表达差异研究[J].江苏农业科学,2020,48(12):48.
 Zhang Xin,et al.Differential expression of TMOD4 gene in longissimus dorsi muscle of sheep[J].Jiangsu Agricultural Sciences,2020,48(12):48.

备注/Memo

备注/Memo:
收稿日期:2022-07-31
基金项目:国家自然科学基金(编号:32002175);国家自然科学基金(编号:31902123);金陵科技学院2021年科教融合项目(2021KJRH32);金陵科技学院博士科研启动基金(编号:jit-b-202035)。
作者简介:刘京鸽(1984—),女,江苏徐州人,博士,讲师,主要从事动物遗传育种与繁殖教学及科研研究。E-mail:waqbmlg@163.com。
通信作者:张金璧,博士,副教授,主要从事动物遗传育种与繁殖教学及科研研究。E-mail:zhangjinbi@jit.edu.cn。
更新日期/Last Update: 2023-06-20