|本期目录/Table of Contents|

[1]吴胜男,孙凯,张海,等.三裂叶薯KUP/HAK/KT基因家族的全基因组鉴定和表达模式分析[J].江苏农业科学,2023,51(17):52-58.
 Wu Shengnan,et al.Genome-wide identification and expression pattern analysis of KUP/HAK/KT gene family in Ipomoea triloba[JY。]Wu Shengnan,et al(52)[J].Jiangsu Agricultural Sciences,2023,51(17):52-58.
点击复制

三裂叶薯KUP/HAK/KT基因家族的全基因组鉴定和表达模式分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第17期
页码:
52-58
栏目:
生物技术
出版日期:
2023-09-05

文章信息/Info

Title:
Genome-wide identification and expression pattern analysis of KUP/HAK/KT gene family in Ipomoea triloba[JY。]Wu Shengnan,et al(52)
作者:
吴胜男孙凯张海刘峰王凤
吉林省农业科学院经济植物研究所,吉林公主岭 136105
Author(s):
Wu Shengnanet al
关键词:
三裂叶薯KUP/HAK/KT基因家族系统进化逆境胁迫
Keywords:
-
分类号:
S531.01
DOI:
-
文献标志码:
A
摘要:
KUP/HAK/KT是植物中最大的钾转运体家族,在K+的吸收和运输及生物和非生物胁迫反应中起着关键作用。为了研究三裂叶薯ItbHAK基因家族的功能特征,利用生物信息学方法对三裂叶薯ItbHAK基因家族成员进行全面的生物信息学分析,包括系统进化、基因结构、染色定位、启动子分析、组织特异性和逆境胁迫下的表达模式分析。结果显示,在三裂叶薯中共鉴定出20个ItbHAK基因,系统进化关系将其分为4个进化簇。染色体定位结果显示,20个ItbHAK基因不均匀地分布在12条染色体上。三裂叶薯基因家族的蛋白质氨基酸数量在348~1 862之间,该家族的蛋白质均被定位到质膜上。基因结构分析结果显示,部分ItbHAK基因存在外显子丢失的情况。启动子分析发现,20个ItbHAK基因均含有参与生长发育、激素和生物/非生物胁迫的响应原件。三裂叶薯ItbHAK复制分析共发现5对大片段复制事件(ItbHAK1/ItbHAK9、ItbHAK3/ItbHAK8、ItbHAK3/ItbHAK19、ItbHAK4/ItbHAK6和ItbHAK8/ItbHAK19)和1对串联复制事件(ItbHAK16/ItbHAK17)。表达模式分析发现,ItbHAK基因在不同组织和逆境胁迫下的表达模式存在差异。研究结果为阐明三裂叶薯ItbHAK 基因家族的进化关系及进一步研究三裂叶薯ItbHAK基因的功能特性提供了有价值的信息。
Abstract:
-

参考文献/References:

[1]Leigh R A,Wyn J R G. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell[J]. New Phytologist,1984,97(1):1-13.
[2]Wang M,Zheng Q S,Shen Q R,et al. The critical role of potassium in plant stress response[J]. International Journal of Molecular Sciences,2013,14(4):7370-7390.
[3]Nieves-Cordones M,Alemán F,Martínez V,et al. K+ uptake in plant roots. The systems involved,their regulation and parallels in other organisms[J]. Journal of Plant Physiology,2014,171(9):688-695.
[4]Gierth M,Mser P. Potassium transporters in plants-involvement in K+acquisition,redistribution and homeostasis[J]. FEBS Letters,2007,581(12):2348-2356.
[5]Song Z Z,Cong Y,Han L,et al. In silico analyses of KUP proteins based on grape genomic data[J]. Genomics and Applied Biology,2011,30(6):728-737.
[6]Véry A A,Sentenac H. Molecular mechanisms and regulation of K+transport in higher plants[J]. Annual Review of Plant Biology,2003,54:575-603.
[7]Maathuis F J M. The role of monovalent cation transporters in plant responses to salinity[J]. Journal of Experimental Botany,2006,57(5):1137-1147.
[8]Santa-María G E,Rubio F,Dubcovsky J,et al. The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter[J]. The Plant Cell,1997,9(12):2281-2289.
[9]Davies C,Shin R,Liu W H,et al. Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation[J]. Journal of Experimental Botany,2006,57(12):3209-3216.
[10]Horie T,Sugawara M,Okada T,et al. Rice sodium-insensitive potassium transporter,OsHAK5,confers increased salt tolerance in tobacco BY2 cells[J]. Journal of Bioscience and Bioengineering,2011,111(3):346-356.
[11]Martínez-Cordero M A,Martínez V,Rubio F. High-affinity K+uptake in pepper plants[J]. Journal of Experimental Botany,2005,56(416):1553-1562.
[12]Zhang H W,Xiao W,Yu W W,et al. Foxtail millet SiHAK1 excites extreme high-affinity K+ uptake to maintain K+ homeostasis under low K+ or salt stress[J]. Plant Cell Reports,2018,37(11):1533-1546.
[13]Ahn S J,Shin R,Schachtman D P. Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake[J]. Plant Physiology,2004,134(3):1135-1145.
[14]Ruan Y L,Llewellyn D J,Furbank R T. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+transporters and expansin[J]. The Plant Cell,2001,13(1):47-60.
[15]王欣,李强,曹清河,等. 中国甘薯产业和种业发展现状与未来展望[J]. 中国农业科学,2021,54(3):483-492.
[16]马仁罡,孙健英,李宗芸. 基于生物信息学的甘薯基因组学等研究进展[J]. 江苏农业学报,2021,37(2):531-538.
[17]曹清河,张安,李鹏,等. 甘薯近缘野生种的抗病性鉴定与新型种间杂种的获得[J]. 植物遗传资源学报,2009,10(2):224-229.
[18]Grabov A. Plant KT/KUP/HAK potassium transporters:single family-multiple functions[J]. Annals of Botany,2007,99(6):1035-1041.
[19]Mser P,Thomine S,Schroeder J I,et al. Phylogenetic relationships within cation transporter families of Arabidopsis[J]. Plant Physiology,2001,126(4):1646-1667.
[20]晁毛妮,温青玉,张晋玉,等. 大豆KUP/HAK/KT钾转运体基因家族的鉴定与表达分析[J]. 西北植物学报,2017,37(2):239-249.
[21]Zhang Z B,Zhang J W,Chen Y J,et al. Genome-wide analysis and identification of HAK potassium transporter gene family in maize (Zea mays L.)[J]. Molecular Biology Reports,2012,39(8):8465-8473.
[22]Ou W J,Mao X,Huang C,et al. Genome-wide identification and expression analysis of the KUP family under abiotic stress in cassava (Manihot esculenta Crantz)[J]. Frontiers in Physiology,2018,9:17.
[23]Feng X M,Wang Y J,Zhang N N,et al. Genome-wide systematic characterization of the HAK/KUP/KT gene family and its expression profile during plant growth and in response to low-K+stress in Saccharum[J]. BMC Plant Biology,2020,20(1):1-17.
[24]李学文,游西龙,王艳. 钾离子转运载体HAK/KUP/KT家族参与植物耐盐性的研究进展[J]. 植物科学学报,2019,37(1):101-108.
[25]金龙飞,张安妮,滕梦鑫,等. 香蕉钾转运体HAK/KUP/KT家族鉴定及其在果实发育和低钾胁迫下的表达分析[J]. 江苏农业科学,2022,50(2):30-36.
[26]Yang Z F,Gao Q S,Sun C S,et al. Molecular evolution and functional divergence of HAK potassium transporter gene family in rice (Oryza sativa L.)[J]. Journal of Genetics and Genomics,2009,36(3):161-172.
[27]吴胜男,杨媛,李英壮,等. 小麦KUP/HAK/KT基因家族的全基因组鉴定、系统进化和表达模式分析[J]. 西北农业学报,2021,30(3):351-364.
[28]Yang T Y,Lu X,Wang Y,et al. HAK/KUP/KT family potassium transporter genes are involved in potassium deficiency and stress responses in tea plants (Camellia sinensis L.):expression and functional analysis[J]. BMC Genomics,2020,21(1):1-18.
[29]Li Y,Peng L R,Xie C Y,et al. Genome-wide identification,characterization,and expression analyses of the HAK/KUP/KT potassium transporter gene family reveals their involvement in K+deficient and abiotic stress responses in pear rootstock seedlings[J]. Plant Growth Regulation,2018,85(2):187-198.
[30]Cai K F,Zeng F R,Wang J M,et al. Identification and characterization of HAK/KUP/KT potassium transporter gene family in barley and their expression under abiotic stress[J]. BMC Genomics,2021,22(1):1-14.
[31]Takahashi R,Nishio T,Ichizen N,et al. High-affinity K+transporter PhaHAK5 is expressed only in salt-sensitive reed plants and shows Na+ permeability under NaCl stress[J]. Plant Cell Reports,2007,26(9):1673-1679.
[32]Ruiz-Lau N,Bojórquez-Quintal E,Benito B,et al. Molecular cloning and functional analysis of a Na+-insensitive K+transporter of Capsicum chinense Jacq[J]. Frontiers in Plant Science,2016,7:1980.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-10-31
基金项目:吉林省科技发展计划地方科技创新引导项目(编号:20210404013NC)。
作者简介:吴胜男(1993—),男,黑龙江大庆人,硕士,主要从事甘薯遗传育种研究。E-mail:wushengnan666@163.com。
通信作者:王凤,硕士,研究员,主要从事甘薯遗传育种和栽培技术研究。E-mail:wangfeng3871@163.com。
更新日期/Last Update: 2023-09-05