|本期目录/Table of Contents|

[1]赵欣,卢海峰,钱程,等.紫花苜蓿叶面积和叶解剖结构对盐胁迫的响应[J].江苏农业科学,2023,51(19):145-152.
 Zhao Xin,et al.Response of leaf area and leaf anatomical structure of alfalfa to salt stress[J].Jiangsu Agricultural Sciences,2023,51(19):145-152.
点击复制

紫花苜蓿叶面积和叶解剖结构对盐胁迫的响应(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第19期
页码:
145-152
栏目:
畜牧兽医与水产蚕桑
出版日期:
2023-10-05

文章信息/Info

Title:
Response of leaf area and leaf anatomical structure of alfalfa to salt stress
作者:
赵欣1卢海峰1钱程1胡雅飞1刘大林1王琳2李新娥1
1.扬州大学动物科学与技术学院,江苏扬州 225009; 2.扬州大学农业科技发展研究院(国际联合实验室),江苏扬州 225009
Author(s):
Zhao Xinet al
关键词:
紫花苜蓿叶解剖结构叶厚度角质层厚度叶面积
Keywords:
-
分类号:
S541+.101
DOI:
-
文献标志码:
A
摘要:
叶片大小和解剖结构的变化在植物适应盐胁迫生长中具有重要作用。为探讨盐胁迫条件下,不同耐盐性紫花苜蓿品种的叶片结构对盐胁迫的响应,选择2个紫花苜蓿品种WL363HQ、WL712,利用温室盆栽试验,对其进行3种不同浓度NaCl溶液处理,栽培60 d后测量其叶面积、比叶面积、叶片横截面解剖特征。结果表明:(1) 对于高耐盐性品种WL363HQ,盐胁迫降低了其叶面积,提高了其叶厚度、叶肉组织厚度及其厚度百分比、叶肉栅栏组织厚度和厚度百分比、栅海比,降低了其细胞壁厚度和海绵组织厚度百分比;(2) 对于低耐盐性品种WL712,盐胁迫增加了其比叶面积,提高了其上表皮厚度,降低了其角质层厚度以及暴露在单位细胞间隙中的细胞壁的表面积(Sm);另外,叶厚度、叶肉、栅栏组织厚度随NaCl浓度先升高后降低;(3) 主成分分析结果表明,WL363HQ品种在盐胁迫下响应的主导特征是叶肉、栅栏组织厚度,而WL712品种的主导特征为叶肉、栅栏组织厚度、角质层、表皮厚度。不同耐盐性紫花苜蓿品种叶面积和叶解剖特征对盐胁迫的不同响应,揭示了紫花苜蓿高耐盐品种的耐盐机制。
Abstract:
-

参考文献/References:

[1]孙娟娟,阿拉木斯,赵金梅,等. 6个紫花苜蓿品种氨基酸组成分析及营养价值评价[J]. 中国农业科学,2019,52(13):2359-2367.
[2]Zhang J L,Shi H Z.Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynthesis Research,2013,115(1):1-22.
[3]韩颜隆,刘晓静,王静,等. 施氮对不同品种紫花苜蓿根系特性和生产性能的影响[J]. 草地学报,2022,30(2):379-384.
[4]田小霞,毛培春,李杉杉,等. 紫花苜蓿苗期耐盐指标筛选及耐盐性综合评价[J]. 草地学报,2017,25(3):545-553.
[5]孙洪仁,穆尼热·买买提,沙吾列·沙比汗,等. 西北荒漠绿洲区紫花苜蓿土壤氮素丰缺指标和推荐施氮量初步研究[J]. 中国农业大学学报,2022,27(2):87-97.
[6]郭耀东,程曼,赵秀峰,等. 轮作绿肥对盐碱地土壤性质、后作青贮玉米产量及品质的影响[J]. 中国生态农业学报,2018,26(6):856-864.
[7]杜学军,胡树文. 基于文献计量分析的近30年国内外盐碱地研究进展[J]. 安徽农业科学,2021,49(18):236-239,242.
[8]田晨霞,张咏梅,王凯,等. 紫花苜蓿组织解剖结构对NaHCO3盐碱胁迫的响应[J]. 草业学报,2014,23(5):133-142.
[9]王忠. 植物生理学[M]. 北京:中国农业出版社,2000.
[10]李芳兰,包维楷. 植物叶片形态解剖结构对环境变化的响应与适应[J]. 植物学通报,2005,40(增刊1):118-127.
[11]吴琼,韩亚楠,高睿,等. 乌拉尔甘草实生苗对土壤盐胁迫的形态与结构响应[J]. 种子,2015,34(1):25-31,34.
[12]刘爱荣,王桂芹,章小华. NaCl处理对空心莲子草营养器官解剖结构的影响[J]. 广西植物,2007,27(5):682-686.
[13]lvarez S,Gómez-Bellot M J,Castillo M,et al. Osmotic and saline effect on growth,water relations,and ion uptake and translocation in Phlomis purpurea plants[J]. Environmental and Experimental Botany,2012,78:138-145.
[14]Shipley B. Structured interspecific determinants of specific leaf area in 34 species of herbaceous angiosperms[J]. Functional Ecology,1995,9(2):312.
[15]Uchiya P,Escaray F J,Bilenca D,et al. Salt effects on functional traits in model and in economically important Lotusspecies[J]. Plant Biology,2016,18(4):703-709.
[16]Sarker U,Oba S. The response of salinity stress-induced A.tricolor to growth,anatomy,physiology,non-enzymatic and enzymatic antioxidants[J]. Frontiers in Plant Science,2020,11:559876.
[17]刘睿,孙伟,巢牡香,等. 盐胁迫下木榄幼苗叶片的解剖学变化[J]. 热带亚热带植物学报,2009,17(2):169-175.
[18]Acosta-Motos J,Ortuno M,Bernal-Vicente A,et al. Plant responses to salt stress:adaptive mechanisms[J]. Agronomy,2017,7(1):18.
[19]Garrido Y,Tudela J A,Marín A,et al. Physiological,phytochemical and structural changes of multi-leaf lettuce caused by salt stress[J]. Journal of the Science of Food and Agriculture,2014,94(8):1592-1599.
[20]姜伟,崔世茂,李慧霞,等. 盐胁迫对辣椒幼苗根、茎、叶显微结构的影响[J]. 蔬菜,2017(3):6-15.
[21]Avestan S,Ghasemnezhad M,Esfahani M,et al. Effects of nanosilicon dioxide on leaf anatomy,chlorophyll fluorescence,and mineral element composition of strawberry under salinity stress[J]. Journal of Plant Nutrition,2021,44(20):3005-3019.
[22]韦江玲,王增军. 4种红树植物幼苗叶片解剖结构及生态适应研究[J]. 安徽农业科学,2019,47(18):115-118.
[23]刘雄盛,肖玉菲,王勇,等. 江南油杉营养器官的解剖结构及其生态适应性[J]. 植物科学学报,2020,38(1):39-46.
[24]曹红星,黄汉驹,雷新涛,等. 低温胁迫下椰子叶片解剖结构差异研究[J]. 热带作物学报,2014,35(12):2420-2425.
[25]Xu H M,Tam N F Y,Zan Q J,et al. Effects of salinity on anatomical features and physiology of a semi-mangrove plant Myoporum bontioides[J]. Marine Pollution Bulletin,2014,85(2):738-746.
[26]Boughalleb F,Denden M,Ben Tiba B. Anatomical changes induced by increasing NaCl salinity in three fodder shrubs,Nitraria retusa,Atriplex halimus and Medicago arborea[J]. Acta Physiologiae Plantarum,2009,31(5):947-960.
[27]Terashima I,Hanba Y T,Tholen D,et al. Leaf functional anatomy in relation to photosynthesis[J]. Plant Physiology,2011,155(1):108-116.
[28]Tomás M,Flexas J,Copolovici L,et al. Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species:quantitative limitations and scaling up by models[J]. Journal of Experimental Botany,2013,64(8):2269-2281.
[29]Tosens T,Niinemets ,Westoby M,et al. Anatomical basis of variation in mesophyll resistance in eastern Australian sclerophylls:news of a long and winding path[J]. Journal of Experimental Botany,2012,63(14):5105-5119.
[30]江晓慧,高阳,王广帅,等. 基于FvCB模型分析盐分胁迫对棉花叶片光合作用的影响[J]. 应用生态学报,2020,31(5):1653-1659.
[31]Scafaro A P,Von Caemmerer S,Evans J R,et al. Temperature response of mesophyll conductance in cultivated and wild Oryza species with contrasting mesophyll cell wall thickness[J]. Plant,Cell & Environment,2011,34(11):1999-2008.
[32]Li L M,Zhao J,Wang C R,et al. Comprehensive evaluation of robotic global performance based on modified principal component analysis[J]. International Journal of Advanced Robotic Systems,2020,17(4):172988141989688.
[33]李炜,毕影东,刘建新,等. 寒地野生大豆资源农艺性状的相关性和主成分分析[J]. 土壤与作物,2022,11(1):10-17.
[34]Yu,Shi,Hui,et al. Effects of salt stress on the leaf shape and scaling of Pyrus betulifolia Bunge[J]. Symmetry,2019,11(8):991.
[35]Praxedes S C,de Lacerda C F,DaMatta F M,et al. Salt tolerance is associated with differences in ion accumulation,biomass allocation and photosynthesis in cowpea cultivars[J]. Journal of Agronomy and Crop Science,2009,196(3):193-204.
[36]金鹰,王传宽. 植物叶片水力与经济性状权衡关系的研究进展[J]. 植物生态学报,2015,39(10):1021-1032.
[37]Liu C G,Zhou X Q,Chen D G,et al. Natural variation of leaf thickness and its association to yield traits in indica rice[J]. Journal of Integrative Agriculture,2014,13(2):316-325.
[38]Yeats T H,Rose J K C.The formation and function of plant cuticles[J]. Plant Physiology,2013,163(1):5-20.
[39]Crang R,Lyons-Sobaski S,Wise R. Plant anatomy[M]. Switzerland:Springer Cham,2018:419-426.
[40]Graicˇ M,Budak V,Klancˇnik K,et al. Optical properties of halophyte leaves are affected by the presence of salt on the leaf surface[J]. Biologia,2017,72(10):1131-1139.
[41]Onoda Y,Richards L,Westoby M.The importance of leaf cuticle for carbon economy and mechanical strength[J]. New Phytologist,2012,196(2):441-447.
[42]Palhares Neto L,Souza L M,Morais M B,et al. Morphophysiological and biochemical responses of Lippia grata schauer (Verbenaceae) to water deficit[J]. Journal of Plant Growth Regulation,2020,39(1):26-40.
[43]Navarro A,Baon S,Olmos E,et al. Effects of sodium chloride on water potential components,hydraulic conductivity,gas exchange and leaf ultrastructure of Arbutus unedo plants[J]. Plant Science,2007,172(3):473-480.
[44]李勇,彭少兵,黄见良,等. 叶肉导度的组成、大小及其对环境因素的响应[J]. 植物生理学报,2013,49(11):1143-1154.
[45]Xiong D L,Yu T T,Ling X X,et al. Sufficient leaf transpiration and nonstructural carbohydrates are beneficial for high-temperature tolerance in three rice (Oryza sativa) cultivars and two nitrogen treatments[J]. Functional Plant Biology,2015,42(4):347.
[46]Ye M,Zhang Z C,Huang G J,et al. High leaf mass per area Oryza genotypes invest more leaf mass to cell wall and show a low mesophyll conductance[J]. AoB PLANTS,2020,12(4):plaa028.
[47]Zhang Y Q,Kaiser E,Marcelis L F M,et al. Salt stress and fluctuating light have separate effects on photosynthetic acclimation,but interactively affect biomass[J]. Plant,Cell & Environment,2020,43(9):2192-2206.

相似文献/References:

[1]朱强,邹梦辉,安黎,等.琼花对4种草坪植物的化感作用[J].江苏农业科学,2014,42(10):172.
 Zhu Qiang,et al.Allelopathy of Viburnum macrocephalum to four turfgrass plants[J].Jiangsu Agricultural Sciences,2014,42(19):172.
[2]王小山,朱平华,鲍国成,等.盐碱胁迫对紫花苜蓿根、茎和叶重要养分离子平衡的影响[J].江苏农业科学,2013,41(07):190.
 Wang Xiaoshan,et al.Effect of salt stress on important nutrient ion balance in roots,stems and leaves of Medicago sativa[J].Jiangsu Agricultural Sciences,2013,41(19):190.
[3]田福平,李锦华,张怀山,等.耐旱丰产紫花苜蓿新品系杂选1号的选育及栽培技术[J].江苏农业科学,2013,41(10):92.
 Tian Fuping,et al.Breeding and cultivation techniques of new Medicago sativa lines “Zaxuan No.1”[J].Jiangsu Agricultural Sciences,2013,41(19):92.
[4]杨杰,谷陈建,吴豪杰,等.有机肥和紫花苜蓿对长期抛荒贫瘠土壤的改良效果[J].江苏农业科学,2013,41(12):362.
 Yang Jie,et al.Comparison of improved effects of organic fertilizer and alfalfa on long-abandoned barren soils[J].Jiangsu Agricultural Sciences,2013,41(19):362.
[5]周恒,时永杰,路远,等.不同种植年限紫花苜蓿种植地土壤容重及含水量特征[J].江苏农业科学,2016,44(05):490.
 Zhou Heng,et al.Study on soil bulk density and soil water content in alfalfa field with different growing years[J].Jiangsu Agricultural Sciences,2016,44(19):490.
[6]张丽辉,贾泽君,孙奇,等.2种紫花苜蓿幼苗生长对光照度的可塑性响应[J].江苏农业科学,2015,43(12):263.
 Zhang Lihui,et al.Plasticity response of seedling growth of two Medicago sativa species to light intensity[J].Jiangsu Agricultural Sciences,2015,43(19):263.
[7]刘胜洪,周玲艳,杨妙贤,等.60Co-γ射线诱变紫花苜蓿WL525HQ的SSR研究[J].江苏农业科学,2015,43(07):238.
 Liu Shenghong,et al..Study on 60Co-γ radiation inducing Medicago sativa based on SSR[J].Jiangsu Agricultural Sciences,2015,43(19):238.
[8]吴晓卫,付瑞敏,郭彦钊,等.耐盐碱微生物复合菌剂的选育、复配及其 对盐碱地的改良效果[J].江苏农业科学,2015,43(06):346.
 Wu Xiaowei,et al.Breeding and combination of saline-alkaline-tolerant microbes and their ameliorative effect on saline soils[J].Jiangsu Agricultural Sciences,2015,43(19):346.
[9]李玉波,许清涛,高标,等.脱硫石膏改良盐碱地对紫花苜蓿生长的影响[J].江苏农业科学,2015,43(03):188.
 Li Yubo,et al.Effect of saline-alkali land improved by desulfurization gypsum on growth of Medicago sativa[J].Jiangsu Agricultural Sciences,2015,43(19):188.
[10]张丽辉,蒋远玲,张学凡,等.变温与采后贮藏时间协同作用对紫花苜蓿种子萌发的影响[J].江苏农业科学,2016,44(08):313.
 Zhang Lihui,et al.Synergistic effects of variable temperature and postharvest storage time on germination characteristics of Medicago sativa seed[J].Jiangsu Agricultural Sciences,2016,44(19):313.

备注/Memo

备注/Memo:
收稿日期:2022-07-17
基金项目:江苏现代农业(奶牛产业)技术体系建设专项 [编号:JATS(2020)446]。
作者简介:赵欣(1997—),女,四川自贡人,硕士研究生,主要从事牧草生理生态相关研究。E-mail:zx18990005917@163.com。
通信作者:李新娥,博士,副教授,主要从事草地生态学和牧草生理生态学相关研究。E-mail:lixine@yzu.edu.cn。
更新日期/Last Update: 2023-10-05