|本期目录/Table of Contents|

[1]刘艳艳,丁颖,刘兴华,等.辣椒生长素抑制蛋白基因CaARP1的克隆及其对青枯菌侵染的响应[J].江苏农业科学,2023,51(21):13-19.
 Liu Yanyan,et al.Cloning of pepper auxin repressed protein gene CaARP1 and its response to Ralstonia solanacearum infection[J].Jiangsu Agricultural Sciences,2023,51(21):13-19.
点击复制

辣椒生长素抑制蛋白基因CaARP1的克隆及其对青枯菌侵染的响应(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第21期
页码:
13-19
栏目:
生物技术
出版日期:
2023-11-05

文章信息/Info

Title:
Cloning of pepper auxin repressed protein gene CaARP1 and its response to Ralstonia solanacearum infection
作者:
刘艳艳丁颖刘兴华郑佳秋
江苏沿海地区农业科学研究所,江苏盐城 224000
Author(s):
Liu Yanyanet al
关键词:
辣椒CaARP1基因基因克隆序列分析表达分析
Keywords:
-
分类号:
S641.301;S436.418.1+9
DOI:
-
文献标志码:
A
摘要:
生长素响应基因编码生长素抑制蛋白(ARP),是非常重要的下调基因,能够抑制生长素(IAA)信号的转导,在植物的生长、发育、抗病、抗逆以及种子休眠等过程中发挥重要作用。为解析辣椒ARP1基因的序列特征和功能,以辣椒品种CM334为试材,克隆获得辣椒ARP1基因cDNA全长序列,命名为CaARP1,GenBank登录号为AAR83888.1。序列分析结果表明,辣椒CaARP1基因的cDNA全长228 bp,没有非翻译区,包含1个228 bp的开放阅读框架,编码75个氨基酸。CaARP1基因含有2个外显子和1个内含子,全长385 bp。CaARP1蛋白的分子量为8.298 ku,理论等电点为999,没有跨膜结构,不存在信号肽,为亲水性不稳定蛋白,二元结构元件多为无规则卷曲。CaARP1蛋白与同属茄科植物的马铃薯、番茄、黄果茄、烟草生长素抑制蛋白的同源性较高,序列一致性分别为95.00%、96.67%、93.24%、9189%。实时荧光定量PCR分析结果表明,CaARP1基因在青枯菌侵染1~7 d期间均呈现极显著下调的趋势,推测该基因可能在辣椒应答青枯病侵染中发挥重要作用。
Abstract:
-

参考文献/References:

[1]李成. 生长素抑制蛋白ARP1对烟草生长和抗病性的交叉调控作用[D]. 南京:南京农业大学,2015:1-5.
[2]刘艳艳,丁颖,郑佳秋,等. 植物PRRs和NLRs介导的免疫信号通路研究进展[J]. 江苏农业科学,2023,51(8):43-50.
[3]Spoel S H,Dong X N.How do plants achieve immunity? Defence without specialized immune cells[J]. Nature Reviews Immunology,2012,12(2):89-100.
[4]Kepinski S,Leyser O.The Arabidopsis F-box protein TIR1 is an auxin receptor[J]. Nature,2005,435(7041):446-451.
[5]Lee J,Han C T,Hur Y.Molecular characterization of the Brassica rapa auxin-repressed,superfamily genes,BrARP1 and BrDRM1[J]. Molecular Biology Reports,2013,40(1):197-209.
[6]Gray W M,Kepinski S,Rouse D A,et al. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins[J]. Nature,2001,414(6861):271-276.
[7]Kumar R,Agarwal P,Tyagi A K,et al. Genome-wide investigation and expression analysis suggest diverse roles of auxin-responsive GH3 genes during development and response to different stimuli in tomato (Solanum lycopersicum)[J]. Molecular Genetics and Genomics,2012,287(3):221-235.
[8]Zhu Q,Li B Y,Mu S Y,et al. TTG2-regulated development is related to expression of putative auxin response factor genes in tobacco[J]. BMC Genomics,2013,14(1):806.
[9]Hayashi K I.The interaction and integration of auxin signaling components[J]. Plant and Cell Physiology,2012,53(6):965-975.
[10]Calderón Villalobos L I A,Lee S,de Oliveira C,et al. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin[J]. Nature Chemical Biology,2012,8(5):477-485.
[11]Wang R H,Estelle M.Diversity and specificity:auxin perception and signaling through the TIR1/AFB pathway[J]. Current Opinion in Plant Biology,2014,21:51-58.
[12]Wu L M,Yu M,Holowachuk J,et al. Evaluation of a Brassica napus auxin-repressed gene induced by flea beetle damage and Sclerotinia sclerotiorum infection[J]. American Journal of Plant Sciences,2017,8(8):1921-1952.
[13]Ulmasov T,Hagen G,Guilfoyle T J. ARF1,a transcription factor that binds to auxin response elements[J]. Science,1997,276(5320):1865-1868.
[14]Abel S,Theologis A.Early genes and auxin action[J]. Plant Physiology,1996,111(1):9-17.
[15]Guilfoyle T J,Hagen G.Auxin response factors[J]. Current Opinion in Plant Biology,2007,10(5):453-460.
[16]Roosjen M,Paque S,Weijers D.Auxin response factors:output control in auxin biology[J]. Journal of Experimental Botany,2018,69(2):179-188.
[17]Navarro L,Dunoyer P,Jay F,et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling[J]. Science,2006,312(5772):436-439.
[18]苏盼盼. 水稻生长素抑制基因OsARP1与Pid3介导的稻瘟病抗性关系的初步研究[D]. 南昌:南昌大学,2018:4-7.
[19]刘艳艳. CaSGT1和GaSRC2-1互作及其在PcINF1/CaSRC2-1激活辣椒免疫反应中的作用分析[D]. 福州:福建农林大学,2016.
[20]申磊. CaCDPK15、CaCBL1与CaCML13在辣椒应答青枯菌侵染或高温高湿胁迫中的作用分析[D]. 福州:福建农林大学,2020:3-27.
[21]Shen L,Liu Z Q,Yang S,et al. Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature-high humidity challenge in a positive feedback loop with CaWRKY40[J]. Journal of Experimental Botany,2016,67(8):2439-2451.
[22]Livak K J,Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod[J]. Methods,2001,25(4):402-408.
[23]Zhao Y Y,Li C,Ge J,et al. Recessive mutation identifies auxin-repressed protein ARP1,which regulates growth and disease resistance in tobacco[J]. Molecular Plant-Microbe Interactions,2014,27(7):638-654.
[24]Park S,Han K H.An auxin-repressed gene (RpARP) from black locust (Robinia pseudoacacia) is posttranscriptionally regulated and negatively associated with shoot elongation[J]. Tree Physiology,2003,23(12):815-823.
[25]Zhou J M,Zhang Y L.Plant immunity:danger perception and signaling[J]. Cell,2020,181(5):978-989.
[26]Wang Z X,Yang L Y,Jander G,et al. AIG2A and AIG2B limit the activation of salicylic acid-regulated defenses by tryptophan-derived secondary metabolism in Arabidopsis[J]. The Plant Cell,2022,34(11):4641-4660.
[27]Bjornson M,Pimprikar P,Nürnberger T,et al. The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity[J]. Nature Plants,2021,7(5):579-586.
[28]Macho A P,Schwessinger B,Ntoukakis V,et al. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation[J]. Science,2014,343(6178):1509-1512.

相似文献/References:

[1]任旭琴,彭莉,章宇萍,等.邻苯二甲酸二丁酯对辣椒根系生理特性和土壤酶活性的影响[J].江苏农业科学,2015,43(12):191.
 Ren Xuqin,et al.Effects of dibutyl phthalate (DBP) on root physiological characteristics and soil enzyme activity of pepper[J].Jiangsu Agricultural Sciences,2015,43(21):191.
[2]祁建波,张永吉,张永泰,等.耐低温弱光辣椒新品种扬椒5号的选育[J].江苏农业科学,2014,42(10):153.
 Qi Jianbo,et al.Breeding of new pepper cultivar“Yangjiao No.5”with tolerance to low-temperature and low light-intensity[J].Jiangsu Agricultural Sciences,2014,42(21):153.
[3]刘金兵,王述彬,潘宝贵,等.辣椒新品种苏椒20号的选育与栽培技术[J].江苏农业科学,2013,41(11):110.
 Liu Jinbing,et al.Breeding and cultivation techniques of new hot pepper cultivar “Sujiao No.20”[J].Jiangsu Agricultural Sciences,2013,41(21):110.
[4]陈素娟,陈国元,马运涛.醋糟混合基质在辣椒育苗中的应用[J].江苏农业科学,2013,41(11):178.
 Chen Sujuan,et al.Application of vinegar residue mixed matrix in cultivation of pepper seedlings[J].Jiangsu Agricultural Sciences,2013,41(21):178.
[5]吴永成,郑佳秋,郭军,等.涝害对辣椒幼苗生理活性的影响[J].江苏农业科学,2013,41(12):156.
 Wu Yongcheng,et al.Effect of waterlogging catastrophe on physiological activity of pepper seedlings[J].Jiangsu Agricultural Sciences,2013,41(21):156.
[6]周玲玲,张黎杰,姜若勇,等.不同墙体材料的日光温室环境变化及其对辣椒产量与品质的影响[J].江苏农业科学,2014,42(02):339.
 Zhou Lingling,et al.Effects of different materials of greenhouse walls on environmental factors and yield and quality of pepper[J].Jiangsu Agricultural Sciences,2014,42(21):339.
[7]徐广春,孙亚萍,徐德进,等.设施大棚辣椒蚜虫对烟碱类药剂的敏感性[J].江苏农业科学,2016,44(04):177.
 Xu Guangchun,et al.Susceptibility of capsicum aphides to neonicotinoid insecticides in greenhouse[J].Jiangsu Agricultural Sciences,2016,44(21):177.
[8]莫熙礼,蒋选利,武华文,等.白粉病菌对不同抗性辣椒品种防御酶活性的影响及其互作超微结构分析[J].江苏农业科学,2016,44(06):229.
 Mo Xili,et al.Effects of powdery mildew on defense enzyme activity in pepper with different resistant and ultrastructural analysis of interaction of pepper with Leveillula taurica (Lev.) Arn.[J].Jiangsu Agricultural Sciences,2016,44(21):229.
[9]郑子松,王林闯,李纲,等.不同穴盘育苗基质对辣椒幼苗生长的影响[J].江苏农业科学,2016,44(02):190.
 Zheng Zisong,et al.Effect of different cultivation substrates on growth of pepper seedling[J].Jiangsu Agricultural Sciences,2016,44(21):190.
[10]胡奇,魏猷刚,甘小虎,等.温室秋延后辣椒不同整株方式和采收时段对产量和效益的影响[J].江苏农业科学,2016,44(01):182.
 Hu Qi,et al.Effects of training types and harvesting times on output and benefit of late-autumn pepper in greenhouse[J].Jiangsu Agricultural Sciences,2016,44(21):182.

备注/Memo

备注/Memo:
收稿日期:2023-08-18
基金项目:江苏省农业科技自主创新资金[编号:CX(21)3031];江苏省农业重大新品种创制专项(编号:PZCZ201715)。
作者简介:刘艳艳(1990—),女,山东日照人,硕士,助理研究员,主要从事作物抗逆育种研究。E-mail:1052233980@qq.com。
通信作者:郑佳秋,硕士,副研究员,主要从事辣椒抗逆育种研究。E-mail:nky8236@163.com。
更新日期/Last Update: 2023-11-05