|本期目录/Table of Contents|

[1]鲁明秋,龚小见,刘林娅,等.红阳猕猴桃蔗糖转运蛋白基因AcSUT2的克隆及表达分析[J].江苏农业科学,2023,51(21):36-43.
 Lu Mingqiu,et al.Cloning and expression analysis of sucrose transporter gene AcSUT2 in Hongyang kiwifruit[J].Jiangsu Agricultural Sciences,2023,51(21):36-43.
点击复制

红阳猕猴桃蔗糖转运蛋白基因AcSUT2的克隆及表达分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第21期
页码:
36-43
栏目:
生物技术
出版日期:
2023-11-05

文章信息/Info

Title:
Cloning and expression analysis of sucrose transporter gene AcSUT2 in Hongyang kiwifruit
作者:
鲁明秋12龚小见1刘林娅2龙彩凤12赵超1黄亚成2
1.贵州师范大学贵州省山地环境信息系统与生态环境保护重点实验室,贵州贵阳 550000; 2.六盘水师范学院生物科学与技术学院,贵州六盘水 553000
Author(s):
Lu Mingqiuet al
关键词:
红阳猕猴桃蔗糖转运蛋白AcSUT2基因基因克隆表达分析
Keywords:
-
分类号:
S663.401
DOI:
-
文献标志码:
A
摘要:
蔗糖转运蛋白(SUTs)能够介导蔗糖由源组织到库组织的装载、运输和卸载。以红阳猕猴桃为材料,克隆得到红阳猕猴桃蔗糖转运蛋白基因AcSUT2,并对序列进行生物信息学分析。结果表明,该基因含有1 479 bp的开放阅读框,编码492个氨基酸,分子量和理论等电点分别为53 ku和8.82,包含12个跨膜结构域,属于MFS家族成员和GPH超家族成员。氨基酸序列比对显示,AcSUT2与山茶中蔗糖转运蛋白CsSUT2同源性为84%。进化树分析结果表明,AcSUT2属于蔗糖转运蛋白的SUT4亚家族。组织表达分析显示,AcSUT2在红阳猕猴桃各个组织中均有表达,但在雌花中表达量最高。在果实中,AcSUT2在发育的早中期(花后18~88 d)保持较高的表达量,发育后期表达量下降;CPPU能够显著上调AcSUT2的表达。在叶片中,AcSUT2在叶肉中的表达丰度最高,且随着叶片的发育,在古铜期后表达量逐渐递增。说明蔗糖转运蛋白基因AcSUT2在红阳猕猴桃叶片中蔗糖的装载和果实中蔗糖卸载转运中起着重要作用。
Abstract:
-

参考文献/References:

[1]张维,付复华,罗赛男,等. 湖南红心猕猴桃品种品质评价及综合分析[J]. 食品与发酵工业,2021,47(5):201-210.
[2]张婷,李琛,罗安伟,等. 8种猕猴桃不同组织部位的体外抗氧化活性[J]. 食品科学,2016,37(19):88-93.
[3]黎晓茜,龙友华,尹显慧,等. 茉莉酸甲酯处理对猕猴桃软腐病菌作用机制及果实品质的影响[J]. 食品科学,2019,40(15):239-248.
[4]张春兰,李苇洁,姚红艳,等. 不同猕猴桃品种根际AM真菌多样性与土壤养分相关性分析[J]. 果树学报,2017,34(3):344-353.
[5]黄诚,周长春,李伟. 猕猴桃的营养保健功能与开发利用研究[J]. 食品科技,2007,32(4):51-55.
[6]黄兴成,朱华清,杨叶华,等. 贵州省猕猴桃产量特征及影响因素分析[J]. 中国果树,2023(2):117-121.
[7]史鹏. 苹果蔗糖转运蛋白基因的生物信息学分析[J]. 山西农业科学,2019,47(6):966-969.
[8]Xu X,Yang Y,Liu C,et al. The evolutionary history of the sucrose synthase gene family in higher plants[J]. BMC Plant Biology,2019,19(1):566.
[9]Yan N. Structural advances for the major facilitator superfamily (MFS) transporters[J]. Trends in Biochemical Sciences,2013,38(3):151-159.
[10]王利芬,张虎平,张绍铃. 植物蔗糖转运蛋白及其功能调节研究进展[J]. 植物研究,2012,32(4):501-507.
[11]Arabidopsis G I. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature,2000,408(6814):796-815.
[12]Dusotoit-Coucaud A,Brunel N,Kongsawadworakul P,et al. Sucrose importation into laticifers of Hevea brasiliensis,in relation to ethylene stimulation of latex production[J]. Annals of Botany,2009,104(4):635-647.
[13]Aoki N,Hirose T,Scofield G N,et al. The sucrose transporter gene family in rice[J]. Plant Cell Physiology,2003,44(3):223-232.
[14]Shakya R,Sturm A. Characterization of source-and sink-specific sucrose/K+symporters from carrot [J]. Plant Physiology,1998,118(4):1473-1480.
[15]Noiraud N,Delrot S,Lemoine R. The sucrose transporter of celery. Identification and expression during salt stress[J]. Plant Physiology,2000,122(4):1447-1455.
[16]Kühn C,Grof C P. Sucrose transporters of higher plants[J]. Current Opinion in Plant Biology,2010,13(3):288-298.
[17]Kühn C. A comparison of the sucrose transporter systems of different plant species[J]. Plant Biology,2003,5(3):215-232.
[18]王丹丹,柳洪鹃,王红霞,等. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报,2020,46(7):1120-1127.
[19]李孟珠,王高鹏,巫月,等. 水稻蔗糖转运蛋白OsSUT4参与蔗糖转运的功能研究[J]. 中国水稻科学,2020,34(6):491-498.
[20]张雅文,包淑慧,唐振家,等. 蔗糖转运蛋白OsSUT5在水稻花粉发育及结实中的作用[J]. 中国农业科学,2021,54(16):3369-3385.
[21]Peng Q,Cai Y,Lai E,et al. The sucrose transporter MdSUT4.1 participates in the regulation of fruit sugar accumulation in apple[J]. BioMed Central,2020,20(1):191.
[22]Ma Q J,Sun M H,Lu J,et al. An apple sucrose transporter MdSUT2.2 is a phosphorylation target for protein kinase MdCIPK22 in response to drought[J]. Plant Biotechnology Journal,2019,17(3):625-637.
[23]Ma Q J,Sun M H,Kang H,et al. A CIPK protein kinase targets sucrose transporter MdSUT2.2 at Ser254 for phosphorylation to enhance salt tolerance[J]. Plant Cell And Environment,2019,42(3):918-930.
[24]Richardson A C,Boldingh H L,McAtee P A,et al. Fruit development of the diploid kiwifruit,Actinidia chinensis ‘Hort16A’[J]. BMC Plant Biology,2011,11(1):182.
[25]张慧琴,谢鸣,张琛,等. 猕猴桃果实发育过程中淀粉积累差异及其糖代谢特性[J]. 中国农业科学,2014,47(17):3453-3464.
[26]刘林娅,杨那,代玥,等. 一种大量提取猕猴桃不同组织高质量总RNA的方法[J]. 江西农业学报,2020,32(9):30-34.
[27]戚继艳,阳江华,唐朝荣. 植物蔗糖转运蛋白的基因与功能[J]. 植物学通报,2007,24(4):532-543.
[28]许海峰,曲常志,刘静轩,等. 苹果液泡膜蔗糖转运蛋白基因MdSUT4的表达分析与功能鉴定[J]. 园艺学报,2017,44(7):1235-1243.
[29]Schulz A,Beyhl D,Marten I,et al. Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2[J]. Plant Journal,2011,68(1):129-136.
[30]Wang L F,Qi X X,Huang X S,et al. Overexpression of sucrose transporter gene PbSUT2 from Pyrus bretschneideri,enhances sucrose content in Solanum lycopersicum fruit[J]. Plant Physiology and Biochemistry,2016,105:150-161.
[31]周兰,张利义,张彩霞,等. 苹果实时荧光定量PCR分析中内参基因的筛选[J]. 果树学报,2012,29(6):965-970.
[32]Tong Z G,Gao Z H,Wang F,et al. Selection of reliable reference genes for gene expression studies in peach using real-time PCR[J]. BMC Molecular Biology,2009,10(1):71.
[33]吕岩. 红阳猕猴桃主要特点[J]. 西北园艺,2001(3):37-38.
[34]Weise A,Barker L,Kuhn C,et al. A new subfamily of sucrose transporters,SUT4,with low affinity/high capacity localized in enucleate sieve elements of plants[J]. Plant Cell,2000,12(8)51345-51355.
[35]张慧琴,谢鸣,张琛,等. 猕猴桃果实发育过程中淀粉积累差异及其糖代谢特性[J]. 中国农业科学,2014,47(17):3453-3464.
[36]陈成. 美味猕猴桃果实中糖卸载特性分析[D]. 杨凌:西北农林科技大学,2016:19.
[37]Patrick J W,Botha F C,Birch R G. Metabolic engineering of sugars and simple sugar derivatives in plants[J]. Plant Biotechnology Journal,2013,11(2):142-156.

相似文献/References:

[1]叶开玉,莫权辉,蒋桥生,等.红阳猕猴桃果实生长发育及主要营养物质动态变化[J].江苏农业科学,2020,48(04):127.
 Ye Kaiyu,et al.Growth and dynamic changes of main nutrients in Hongyang kiwifruit fruits[J].Jiangsu Agricultural Sciences,2020,48(21):127.
[2]吕东,李丹丹,徐汝聪,等.粳稻蔗糖转运蛋白基因OsSUTs在灌浆期的表达特点[J].江苏农业科学,2020,48(20):56.
 Lü Dong,et al.Expression characteristics of sucrose transporter gene OsSUTs in japonica rice during grain filling stage[J].Jiangsu Agricultural Sciences,2020,48(21):56.
[3]杨勇,陈露,陈成,等.环剥对红阳猕猴桃果实品质及糖代谢的影响[J].江苏农业科学,2021,49(19):156.
 Yang Yong,et al.Effects of girdling treatment on fruit quality and sugar metabolism of Hongyang kiwifruit[J].Jiangsu Agricultural Sciences,2021,49(21):156.

备注/Memo

备注/Memo:
收稿日期:2023-02-25
基金项目:贵州省科学技术基金(编号:黔科合基础[2020]1Y115、黔科合基础[2019]1445号);贵州省六盘水市科技计划(编号:52020-2022-PT-03、52020-2022-PT-20);六盘水师范学院高层次人才科研启动基金(编号:LPSSYKYJJ201705、LPSSYKYJJ202205);六盘水师范学院科学研究计划(编号:LPSSYLPY202213)。
作者简介:鲁明秋(1995—),男,内蒙古巴彦淖尔人,硕士研究生,研究方向
更新日期/Last Update: 2023-11-05