|本期目录/Table of Contents|

[1]刘娇妍,朱嘉慧,肖浩扬,等.水稻Os01g0853700基因对植物激素和非生物胁迫的响应分析[J].江苏农业科学,2023,51(23):28-34.
 Liu Jiaoyan,et al.Expression analysis of Os01g0853700 gene in response to phytohormones and abiotic stresses in rice[J].Jiangsu Agricultural Sciences,2023,51(23):28-34.
点击复制

水稻Os01g0853700基因对植物激素和非生物胁迫的响应分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第23期
页码:
28-34
栏目:
生物技术
出版日期:
2023-12-05

文章信息/Info

Title:
Expression analysis of Os01g0853700 gene in response to phytohormones and abiotic stresses in rice
作者:
刘娇妍朱嘉慧肖浩扬麦淑桃李琳王丽敏唐辉武
仲恺农业工程学院农业与生物学院,广东广州 510225
Author(s):
Liu Jiaoyanet al
关键词:
水稻MYB转录因子表达分析植物激素非生物胁迫
Keywords:
-
分类号:
S511.01;Q786
DOI:
-
文献标志码:
A
摘要:
一个未知功能的水稻(Oryza sativa L.)MYB转录因子Os01g0853700被克隆,并对其进行系统进化分析和表达分析。结果表明,Os01g0853700与单子叶植物Os01g0853700同源蛋白具有更近的亲缘关系,与双子叶植物Os01g0853700同源蛋白具有相对较远的亲缘关系。组织表达分析结果表明,Os01g0853700在水稻根、茎、叶和幼穗中均有表达,在叶片中表达水平最高。激素处理响应表达分析结果表明,Os01g0853700对脱落酸(abscisic acid,ABA)、赤霉素(gibberellicacid,GA)、生长素(indoleaceticacid,IAA)、多效唑(paclobutrazol,PAC)等激素处理的响应表达均达到显著差异水平。胁迫处理响应表达分析结果表明,Os01g0853700对低温(4 ℃)、高温(42 ℃)、盐胁迫及干旱处理的响应表达均达到显著差异水平。由此推测,Os01g0853700可能参与水稻激素和逆境胁迫响应。本研究结果可为后续Os01g0853700转录因子的功能研究提供参考。
Abstract:
-

参考文献/References:

[1]牛义岭,姜秀明,许向阳. 植物转录因子MYB基因家族的研究进展[J]. 分子植物育种,2016,14(8):2050-2059.
[2]霍庆迪. 紫花地丁两型花相关基因的RNA-Seq转录组分析[D]. 兰州:西北师范大学,2018.
[3]饶席兵,钱禛锋,张蓉琼,等. 蔗茅EfMYB1基因的克隆与表达分析[J]. 西北植物学报,2022,42(9):1487-1494.
[4]兰孟焦,后猛,肖满秋,等. AP2/ERF转录因子参与植物次生代谢和逆境胁迫响应的研究进展[J]. 植物遗传资源学报,2023,24(5):1223-1235.
[5]崔祺,黄子洋,刘洁,等. 彩叶桂[Osmanthus fragrans (Thunb.) Loureiro]OfMYB3基因克隆与表达分析[J/OL ]. 分子植物育种. (2022-09-16)[2023-04-01]. https://kns.cnki.net/kcms2/article/abstract?v=UQzSFoOd3ScFGBsiecEC7DC6-mzhY5h3x3ru0q7GufatBfEDE-1hxXWqOx1gkeyK_JnJY7LpgNNXV hrMpQM2NtVL2bhp0GI4nDKPiUuhLOaZpBs5ht7nMnCeivxfZGgpyJa HU0DJtco=&uniplatform=NZKPT&language=CHS.
[6]Zhang T,Zhang Y X,Sun Y M,et al.Isolation and functional analysis of SrMYB1,a direct transcriptional repressor of SrUGT76G1 in Stevia rebaudiana[J]. Journal of Integrative Agriculture,2023,22(4):1058-1067.
[7]张耐,冉娟,包松明,等. 甘草MYB转录因子基因家族的鉴定及表达分析[J/OL]. 分子植物育种.(2022-03-04)[2023-05-10]. https://kns.cnki.net/kcms/detail/46.1068.S.202203 04.1712.010.html.
[8]朱守晶,史文娟. 苎麻转录因子基因BnMYB3的克隆及表达分析[J]. 西北植物学报,2019,39(3):422-429.
[9]孙爽,胡颖,陆晶宇,等. 马尾松R2R3-MYB基因特征及进化和表达分析[J]. 广西植物,2022,42(4):580-594.
[10]Guo M N,Ruan W Y,Li C Y,et al. Integrative comparison of the role of the PHOSPHATE RESPONSE1 subfamily in phosphate signaling and homeostasis in rice[J]. Plant Physiology,2015,168(4):1762-1776.
[11]Wang Z G,Zhang B L,Chen Z W,et al. Three OsMYB36 members redundantly regulate Casparian strip formation at the root endodermis[J]. The Plant Cell,2022,34(8):2948-2968.
[12]Sutoh K,Washio K,Imai R,et al. An N-terminal region of a Myb-like protein is involved in its intracellular localization and activation of a gibberellin-inducible proteinase gene in germinated rice seeds[J]. Bioscience,Biotechnology,and Biochemistry,2015,79(5):747-759.
[13]Park D Y,Shim Y,Gi E,et al. The MYB-related transcription factor RADIALIS-LIKE3 (OsRL3) functions in ABA-induced leaf senescence and salt sensitivity in rice[J]. Environmental and Experimental Botany,2018,156:86-95.
[14]Li W T,Wang K,Chern M,et al. Sclerenchyma cell thickening through enhanced lignification induced by OsMYB30 prevents fungal penetration of rice leaves[J]. The New Phytologist,2020,226(6):1850-1863.
[15]Kishi-Kaboshi M,Seo S,Takahashi A,et al. The MAMP-responsive MYB transcription factors MYB30,MYB55 and MYB110 activate the HCAA synthesis pathway and enhance immunity in rice[J]. Plant and Cell Physiology,2018,59(5):903-915.
[16]Lyu Y,Yang M,Hu D,et al. The OsMYB30 transcription factor suppresses cold tolerance by interacting with a JAZ protein and suppressing β-amylase expression[J]. Plant Physiology,2017,173(2):1475-1491.
[17]Qiu J H,Xie J H,Chen Y,et al. Warm temperature compromises JA-regulated basal resistance to enhance Magnaporthe oryzae infection in rice[J]. Molecular Plant,2022,15(4):723-739.
[18]姜晓婷,黄高翔,熊小英,等. 秧苗富锌对不同水稻品种镉积累及相关转运基因的影响[J]. 中国农业科学,2022,55(17):3267-3277
[19]陆燕茜,张冬,王立丰,等. 巴西橡胶树HbMYB62转录因子基因的克隆和表达分析[J]. 植物研究,2017,37(6):953-960,969.
[20]董勤勇,张圆圆,魏景芳,等. MYB转录因子在水稻抗逆基因工程中的研究进展[J]. 江苏农业学报,2021,37(2):525-530.
[21]李竹韵,焦子迅,陈阳,等. 黄芪AmMYB44基因的克隆与表达模式分析[J]. 基因组学与应用生物学,2019,38(8):3605-3613.
[22]Yang A,Dai X Y,Zhang W H. A R2R3-type MYB gene,OsMYB2,is involved in salt,cold,and dehydration tolerance in rice[J]. Journal of Experimental Botany,2012,63(7):2541-2556.
[23]Schmidt R,Schippers J H M,Mieulet D,et al. MULTIPASS,a rice R2R3-type MYB transcription factor,regulates adaptive growth by integrating multiple hormonal pathways[J]. The Plant Journal,2013,76(2):258-273.
[24]Vannini C,Locatelli F,Bracale M,et al. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants[J]. The Plant Journal,2004,37(1):115-127.
[25]Dai X Y,Xu Y Y,Ma Q B,et al. Overexpression of an R1R2R3 MYB gene,OsMYB3R-2,increases tolerance to freezing,drought,and salt stress in transgenic Arabidopsis[J]. Plant Physiology,2007,143(4):1739-1751.
[26]Su C F,Wang Y C,Hsieh T H,et al. A novel MYBS3-dependent pathway confers cold tolerance in rice[J]. Plant Physiology,2010,153(1):145-158.
[27]Tang Y H,Bao X X,Zhi Y L,et al. Overexpression of a MYB family gene,OsMYB6,increases drought and salinity stress tolerance in transgenic rice[J]. Frontiers in Plant Science,2019,10:168.
[28]Yin X M,Cui Y C,Wang M L,et al. Overexpression of a novel MYB-related transcription factor,OsMYBR1,confers improved drought tolerance and decreased ABA sensitivity in rice[J]. Biochemical and Biophysical Research Communications,2017,490(4):1355-1361.

相似文献/References:

[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统 作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量 及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
 Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(23):60.
[6]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
 Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(23):62.
[7]赵忠宝,朱清海.稻-蟹-鳅生态系统的能值分析[J].江苏农业科学,2013,41(05):349.
 Zhao Zhongbao,et al.Emergy analysis of paddy-crab-loach ecosystem[J].Jiangsu Agricultural Sciences,2013,41(23):349.
[8]杨红福,姚克兵,束兆林,等.甲氧基丙烯酸酯类杀菌剂对水稻恶苗病的田间药效[J].江苏农业科学,2014,42(12):166.
 Yang Hongfu,et al.Field efficacy of strobilurin fungicides against rice bakanae disease[J].Jiangsu Agricultural Sciences,2014,42(23):166.
[9]唐成,陈露,安敏敏,等.稻瘟病诱导水稻幼苗叶片氧化还原系统的特征谱变化[J].江苏农业科学,2014,42(12):141.
 Tang Cheng,et al.Characteristic spectral changes of redox homeostasis system in rice seedling leaves induced by rice blast[J].Jiangsu Agricultural Sciences,2014,42(23):141.
[10]万云龙.优质水稻—春甘蓝轮作高效栽培模式[J].江苏农业科学,2014,42(12):90.
 Wan Yunlong.Efficient cultivation mode of high quality rice-spring cabbage rotation[J].Jiangsu Agricultural Sciences,2014,42(23):90.

备注/Memo

备注/Memo:
收稿日期:2023-04-12
基金项目:广东省教育厅特色创新项目(编号:2021KTSCX048);广东省自然科学基金(编号:2021A1515010517、2022A1515010798);仲恺农业工程学院研究生科技创新基金(编号:KJCX2022028);仲华基因产业学院项目(编号:KA2103139)。
作者简介:刘娇妍(1998—),女,山东泰安人,硕士研究生,主要从事水稻重要农艺性状分子机理研究。E-mail:zhongyang999@qq.com。
通信作者:唐辉武,博士,副研究员,主要从事水稻重要农艺性状分子机理研究。E-mail:huiwutang@zhku.edu.cn。
更新日期/Last Update: 2023-12-05