|本期目录/Table of Contents|

[1]胡含秀,周晓天,王垚,等.修复复合肥与钝化剂对镉污染农田水稻安全生产的效果研究[J].江苏农业科学,2023,51(23):203-210.
 Hu Hanxiu,et al.Effects of remediation compound fertilizer and passivator on safe production of rice in cadmium polluted farmland[J].Jiangsu Agricultural Sciences,2023,51(23):203-210.
点击复制

修复复合肥与钝化剂对镉污染农田水稻安全生产的效果研究(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第23期
页码:
203-210
栏目:
资源与环境
出版日期:
2023-12-05

文章信息/Info

Title:
Effects of remediation compound fertilizer and passivator on safe production of rice in cadmium polluted farmland
作者:
胡含秀1周晓天1王垚1刘莹1马中文1陈勇2马友华1
1.安徽农业大学资源与环境学院/农田生态保育与污染防控安徽省重点实验室,安徽合肥 230036;
2.中盐安徽红四方肥业股份有限公司,安徽合肥 231602
Author(s):
Hu Hanxiuet al
关键词:
修复复合肥竹炭镉污染水稻安全利用
Keywords:
-
分类号:
X53
DOI:
-
文献标志码:
A
摘要:
为探究修复复合肥与钝化剂对镉污染农田水稻的安全生产效果,对镉污染耕地进行安全利用和修复治理,保障水稻粮食安全,筛选出耕地安全利用经济可行的农艺方法,在某镉污染耕地开展修复复合肥与钝化剂修复水稻田间试验,对土壤pH值、有效态镉含量、水稻籽粒、秸秆镉含量、土壤养分含量及水稻养分含量进行测定。结果发现,空白处理的籽粒镉含量超出国家食品安全限量值(Cd含量>0.2 mg/kg),经复合钝化剂、修复复合肥、石灰+有机肥、竹炭、修复复合肥+竹炭、紫云英、修复复合肥+紫云英等处理后水稻籽粒镉含量均可至国家食品安全限量值以下,各处理较CK降低水稻籽粒镉含量40.18%~59.10%,降低水稻秸秆镉含量25.39%~48.20%,提升土壤pH值0.55~088,降低土壤镉有效态镉含量13.38%~34.45%,降低水稻籽粒镉富集系数37.31%~57.17%,降低土壤镉的生物有效性系数8.87%~31.60%,综合提升土壤养分含量和植株养分含量,对水稻产量没有显著性影响。修复复合肥和选用的钝化剂对镉轻度污染耕地水稻均具有较好的安全利用效果,综合安全利用效果、经济效益和环境效益分析,修复复合肥具有更强的经济性和可操作性,实现了施肥与镉污染农田安全利用的结合,同时综合提升土壤全氮、有效磷、碱解氮、速效钾和有机质等养分含量,促进水稻对氮磷钾等养分吸收。研究结果可为长江流域中轻度镉污染耕地安全生产提供技术支持。
Abstract:
-

参考文献/References:

[1]于元赫,吕建树,王亚梦. 黄河下游典型区域土壤重金属来源解析及空间分布[J]. 环境科学,2018,39(6):2865-2874.
[2]张路,唐婵,余海英,等. 稻—麦轮作模式下不同钝化材料对镉污染农田土壤的原位钝化效应[J]. 环境科学,2023,44(3):1698-1705.
[3]赵方杰,谢婉滢,汪鹏. 土壤与人体健康[J]. 土壤学报,2020,57(1):1-11.
[4]姜月华,倪化勇,周权平,等. 长江经济带生态修复示范关键技术及其应用[J]. 中国地质,2021,48(5):1305-1333.
[5]Wan Y N,Wang K,Liu Z,et al. Effect of selenium on the subcellular distribution of cadmium and oxidative stress induced by cadmium in rice (Oryza sativa L.)[J]. Environmental Science and Pollution Research,2019,26(16):16220-16228.
[6]Uraguchi S,Mori S,Kuramata M,et al. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice[J]. Journal of Experimental Botany,2009,60(9):2677-2688.
[7]Li B,He W X,Wang C Q,et al. Effect of cadmium stress on ammonium assimilation enzymes and polyamine in the roots of rice (Oryza sativa) with different cadmium resistance[J]. International Journal of Applied Environmental Sciences,2013,8(17):2203-2214.
[8]Zeng T,Fang B H,Huang F L,et al. Mass spectrometry-based metabolomics investigation on two different indica rice grains (Oryza sativa L.) under cadmium stress[J]. Food Chemistry,2021,343:128472.
[9]杨琼,杨忠芳,张起钻,等. 中国广西岩溶地质高背景区土壤-水稻系统Cd等重金属生态风险评价[J]. 中国科学(地球科学),2021,51(8):1317-1331.
[10]曾晓舵,王向琴,凃新红,等. 农田土壤重金属污染阻控技术研究进展[J]. 生态环境学报,2019,28(9):1900-1906.
[11]徐露露,马友华,马铁铮,等. 钝化剂对土壤重金属污染修复研究进展[J]. 农业资源与环境学报,2013,30(6):25-29.
[12]Abedi T,Mojiri A. Cadmium uptake by wheat (Triticum aestivum L.):an overview[J]. Plants,2020,9(4):500.
[13]Zhang J,Kong F Y,Lu S. Remediation effect and mechanism of inorganic passivators on cadmium contaminated acidic paddy soil[J]. Environmental Science,2022,43(10):4679-4686.
[14]Bashir S,Rizwan M S,Salam A,et al. Cadmium immobilization potential of rice straw-derived biochar,zeolite and rock phosphate:extraction techniques and adsorption mechanism[J]. Bulletin of Environmental Contamination and Toxicology,2018,100(5):727-732.
[15]Li H,Liu Y,Zhou Y Y,et al. Effects of red mud based passivator on the transformation of Cd fraction in acidic Cd-polluted paddy soil and Cd absorption in rice[J]. Science of the Total Environment,2018,640/641:736-745.
[16]Yang X,Zhang W Y,Qin J H,et al. Role of passivators for Cd alleviation in rice-water spinach intercropping system[J]. Ecotoxicology and Environmental Safety,2020,205:111321.
[17]许璐,周春海,刘梅,等. 石灰海泡石钝化后两种轮作模式对重度镉污染农田土壤的利用及修复[J]. 环境科学,2022,43(6):3299-3307.
[18]宋文恩,陈世宝,唐杰伟. 稻田生态系统中镉污染及环境风险管理[J]. 农业环境科学学报,2014,33(9):1669-1678.
[19]王娟,苏德纯. 基于文献计量的小麦玉米重金属污染农田修复治理技术及效果分析[J]. 农业环境科学学报,2021,40(3):493-500.
[20]孟龙,黄涂海,陈謇,等. 镉污染农田土壤安全利用策略及其思考[J]. 浙江大学学报(农业与生命科学版),2019,45(3):263-271.
[21]Jin Z H,Zhang M,Li R,et al. Spent mushroom substrate combined with alkaline amendment passivates cadmium and improves soil property[J]. Environmental Science and Pollution Research,2020,27(14):16317-16325.
[22]Tang B,Xu H P,Song F M,et al. Effect of biochar on immobilization remediation of Cd-contaminated soil and environmental quality[J]. Environmental Research,2022,204:111840.
[23]刘冬冬,李素霞,刘海霞. 酸性农田土壤镉污染修复钝化材料筛选研究[J]. 土壤通报,2022,53(1):213-220.
[24]周悦,褚克坚,苏良湖,等. 农艺措施对土壤可溶性有机质的影响研究进展[J]. 土壤,2022,54(3):437-445.
[25]陈德,赵首萍,叶雪珠,等. 不同钝化剂对小米椒吸收和积累镉的影响[J]. 浙江农业学报,2021,33(10):1921-1930.
[26]骆文轩,宋肖琴,陈国安,等. 田间施用石灰和有机肥对水稻吸收镉的影响[J]. 水土保持学报,2020,34(3):232-237.
[27]倪幸,黄其颖,叶正钱. 竹炭施用对土壤镉形态转化和小麦镉积累的影响[J]. 江苏农业学报,2019,35(4):818-824.
[28]梁学峰,徐应明,王林,等. 天然黏土联合磷肥对农田土壤镉铅污染原位钝化修复效应研究[J]. 环境科学学报,2011,31(5):1011-1018.
[29]汤建,倪国荣,王婉菁,等. 紫云英翻压条件下生物炭施用量对水稻Cd迁移积累的影响[J]. 江西农业大学学报,2021,43(6):1232-1240.
[30]Yang W T,Zhou H,Gu J F,et al. Effects of a combined amendment on Pb,Cd,and As availability and accumulation in rice planted in contaminated paddy soil[J]. Soil and Sediment Contamination:an International Journal,2017,26(1):70-83.
[31]Wang G B,Zhang Q Q,Du W C,et al. In-situ immobilization of cadmium-polluted upland soil:a ten-year field study[J]. Ecotoxicology and Environmental Safety,2021,207:111275.
[32]胡莹,黄益宗,段桂兰,等. 镉对不同生态型水稻的毒性及其在水稻体内迁移转运[J]. 生态毒理学报,2012,7(6):664-670.
[33]吴博晗,吴向阳,李霞,等. 镉对水稻及种植土壤影响的研究进展[J]. 江苏农业科学,2021,49(18):25-33.
[34]黄新元,赵方杰. 植物防御素调控水稻镉积累的新机制[J]. 植物学报,2018,53(4):451-455.
[35]王天宇,陈謇,施加春,等. 镉污染耕地大豆安全生产模式的探究[J]. 农业环境科学学报,2022,41(8):1629-1635,1614.
[36]林欣颖,谭祎,历红波. 稻米镉积累的影响因素与阻控措施[J]. 环境化学,2020,39(6):1530-1543.
[37]马杰,孙向阳,索琳娜,等. 两种改良剂对北方石灰性土壤中镉的钝化及小白菜生长的影响[J]. 华北农学报,2022,37(2):152-159.
[38]姚臻晖,涂理达,周慧平,等. 稻田镉污染原位钝化修复及磷积累与迁移特征[J]. 中国环境科学,2021,41(5):2374-2379.
[39]Luo W X,Yang S N,Khan M A,et al. Mitigation of Cd accumulation in rice with water management and calcium-magnesium phosphate fertilizer in field environment[J]. Environmental Geochemistry and Health,2020,42(11):3877-3886.
[40]韩雷,陈娟,杜平,等. 不同钝化剂对Cd污染农田土壤生态安全的影响[J]. 环境科学研究,2018,31(7):1289-1295.
[41]贾倩,胡敏,张洋洋,等. 钾硅肥施用对水稻吸收铅、镉的影响[J]. 农业环境科学学报,2015,34(12):2245-2251.
[42]Chen S,Sun L N,Sun T H,et al. Interaction between cadmium,lead and potassium fertilizer (K2SO4) in a soil-plant system[J]. Environmental Geochemistry and Health,2007,29(5):435-446.
[43]马建伟,王慧,罗启仕. 电动力学-新型竹炭联合作用下土壤镉的迁移吸附及其机理[J]. 环境科学,2007,28(8):1829-1834.
[44]隋凤凤,王静波,吴昊,等. 生物质炭钝化农田土壤镉的若干研究进展[J]. 农业环境科学学报,2018,37(7):1468-1474.
[45]王义,王勃然,周文涛,等. 生物炭与水分管理耦合对晚稻镉迁移与积累的影响[J]. 农业环境科学学报,2020,39(7):1479-1485.
[46]Sui F Q,Chang J D,Tang Z,et al. Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize[J]. Plant and Soil,2018,433(1):377-389.
[47]宋波,曾炜铨. 土壤有机质对镉污染土壤修复的影响[J]. 土壤通报,2015,46(4):1018-1024.
[48]朱启东,鲁艳红,廖育林,等. 翻压紫云英对双季稻产量、镉吸收及转运的影响[J]. 植物营养与肥料学报,2021,27(11):1949-1958.

相似文献/References:

[1]闫宗兰,尉震,莫德伦,等.竹炭对溶液中龙胆紫的吸附性能[J].江苏农业科学,2014,42(11):401.
 Yan Zonglan,et al(0).Adsorption properties of bamboo charcoal to gentian violet in solution[J].Jiangsu Agricultural Sciences,2014,42(23):401.
[2]张云,杨鹏,陈金发,等.炭化水竹吸附废水中Cu2+的性能[J].江苏农业科学,2014,42(04):317.
 Zhang Yun,et al.Study on adsorption of Cu2+ in wastewater by carbonized fishscale bamboo[J].Jiangsu Agricultural Sciences,2014,42(23):317.

备注/Memo

备注/Memo:
收稿日期:2023-03-01
基金项目:国家重点研发计划(编号:2018YFD0800203);安徽省科技重大攻关项目 (编号:17030701053)。
作者简介:胡含秀(1997—),女,安徽长丰人,硕士,主要从事土壤重金属修复研究。E-mail:464529592@qq.com。
通信作者:马友华,博士,教授,主要从事土壤重金属修复、农业面源污染、农业资源环境与信息技术研究。E-mail:yhma@ahau.edu.cn。
更新日期/Last Update: 2023-12-05