|本期目录/Table of Contents|

[1]龚婷,刘灵娣,温春秀,等.丹参SmWRKY33基因的克隆与表达分析[J].江苏农业科学,2024,52(3):53-60.
 Gong Ting,et al.Cloning and expression analysis of SmWRKY33 gene in Salvia miltiorrhiza[J].Jiangsu Agricultural Sciences,2024,52(3):53-60.
点击复制

丹参SmWRKY33基因的克隆与表达分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第3期
页码:
53-60
栏目:
生物技术
出版日期:
2024-02-05

文章信息/Info

Title:
Cloning and expression analysis of SmWRKY33 gene in Salvia miltiorrhiza
作者:
龚婷12刘灵娣1温春秀1武玉翠2王升3万修福3孙亚倩1姜涛1
1. 河北省农林科学院经济作物研究所,河北石家庄 050051; 2. 河北工程大学园林与生态工程学院,河北邯郸 056038;3. 道地药材国家重点实验室,北京 100700
Author(s):
Gong Tinget al
关键词:
丹参SmWRKY33基因生物信息学qRT-PCR基因克隆
Keywords:
-
分类号:
S567.5+30.1
DOI:
-
文献标志码:
A
摘要:
为了研究WRKY33基因在丹参非生物胁迫中的作用机制,以白花丹参为试验材料,对丹参转录组数据进行分析,挖掘出丹参WRKY33基因参考序列并设计特异性引物,利用基因克隆技术从丹参中克隆出WRKY33基因的全长cDNA,命名为SmWRKY33。对SmWRKY33基因进行生物信息学分析,同时利用荧光定量方法探究SmWRKY33基因在逆境胁迫下的表达模式。结果表明,SmWRKY33基因核苷酸长度为1 635 bp,编码544个氨基酸。生物信息学分析显示,SmWRKY33基因的理论相对分子量为60 835.66,等电点为7.00,定位于细胞核,不存在跨膜区及信号肽,SmWRKY33蛋白为不稳定亲水蛋白。亲缘关系显示,SmWRKY33与紫苏、芝麻、白花泡桐的WRKY33亲缘关系较近。密码子偏好性分析得出拟南芥真核表达最适应丹参SmWRKY33基因的外源表达。qRT-PCR结果表明,SmWRKY33基因在低温、高温、PEG、NaCl等逆境胁迫诱导下具有不同的表达模式,其中低温、NaCl能显著诱导SmWRKY33基因的高表达,说明该基因对温度调节、盐胁迫较为敏感,猜测其参与温度、盐胁迫调控反应机制。本试验首次从丹参中克隆出SmWRKY33基因,探讨了该基因在丹参逆境胁迫下的作用机制,旨在为培育丹参的抗逆新品种提供参考基因。
Abstract:
-

参考文献/References:

[1]张夏楠,关红雨,高伟,等. 中药丹参资源开发现代研究进展[J]. 转化医学研究(电子版),2014,4(4):26-36.
[2]国家药典委员会.中华人民共和国药典[M]. 北京:中国医药科技出版社,2020.
[3]马晓晶,杨健,马桂荣,等. 中药丹参的现代化研究进展[J]. 中国中药杂志,2022,47(19):5131-5139.
[4]宋经元,罗红梅,李春芳,等. 丹参药用模式植物研究探讨[J]. 药学学报,2013,48(7):1099-1106.
[5]刘大会,郭兰萍,黄璐琦,等. 土壤水分含量对丹参幼苗生长及有效成分的影响[J]. 中国中药杂志,2011,36(3):321-325.
[6]Wang Z R,Liu L,Su H,et al. Jasmonate and aluminum crosstalk in tomato:identification and expression analysis of WRKYs and ALMTs during JA/Al-regulated root growth[J]. Plant Physiology and Biochemistry,2020,154:409-418.
[7]Chen X J,Li C,Wang H,et al. WRKY transcription factors:evolution,binding,and action[J]. Phytopathology Research,2019,1(1):1-15.
[8]Zhang Y L,Du P,Xiong F Q,et al. WRKY genes improve drought tolerance in Arachis duranensis[J]. Frontiers in Plant Science,2022,13:910408.
[9]Yu Y,Song T Q,Wang Y K,et al. The wheat WRKY transcription factor TaWRKY1-2D confers drought resistance in transgenic Arabidopsis and wheat (Triticum aestivum L.)[J]. International Journal of Biological Macromolecules,2023,226:1203-1217.
[10]Cai R H,Dai W,Zhang C S,et al. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants[J]. Planta,2017,246(6):1215-1231.
[12]吴普,孙星衍,孙冯翼. 神农本草经[M]. 太原:山西科学技术出版社,2010.
[13]高学敏. 本草纲目[M]. 北京:印刷工业出版社,2011:73.
[14]Mei X G,Wang S Q,Zhang L,et al. Widely targeted metabolomics analysis revealed components change regularity of Salvia miltiorrhiza Bunge after post-harvest drying under different temperature[J]. Industrial Crops and Products,2022,188:115638.
[15]Tong Q,Zhang C,Tu Y,et al. Biosynthesis-based spatial metabolome of Salvia miltiorrhiza Bunge by combining metabolomics approaches with mass spectrometry-imaging[J]. Talanta,2022,238:123045.
[16]di Cesare Mannelli L,Piccolo M,Maione F,et al. Tanshinones from Salvia miltiorrhiza Bunge revert chemotherapy-induced neuropathic pain and reduce glioblastoma cells malignancy[J]. Biomedicine & Pharmacotherapy,2018,105:1042-1049.
[17]Wang H P,Chen W Q,Xu Z Y,et al. Functions of WRKYs in plant growth and development[J]. Trends in Plant Science,2023,28(6):630-645.
[18]Chen L G,Song Y,Li S J,et al. The role of WRKY transcription factors in plant abiotic stresses[J]. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms,2012,1819(2):120-128.
[19]Wang X J,Du B J,Liu M,et al. Arabidopsis transcription factor WRKY33 is involved in drought by directly regulating the expression of CesA8[J]. American Journal of Plant Sciences,2013,4(6):21-27.
[20]Zhou J,Wang J,Zheng Z Y,et al. Characterization of the promoter and extended C-terminal domain of Arabidopsis WRKY33 and functional analysis of tomato WRKY33 homologues in plant stress responses[J]. Journal of Experimental Botany,2015,66(15):4567-4583.
[21]张远嬿. 苹果MdWRKY33基因的克隆与功能分析[D]. 沈阳:沈阳农业大学,2018:13-17.
[22]范荣伟. 大白菜BrWRKY33基因及其上游调控序列的克隆与功能研究[D]. 北京:首都师范大学,2009:11-21.
[23]张蕾. 毛果杨WRKY33基因的克隆及抗旱耐盐碱性研究[D]. 哈尔滨:东北林业大学,2022:6-14.
[24]Li H,Gao Y,Xu H,et al. ZmWRKY33,a WRKY maize transcription factor conferring enhanced salt stress tolerances in Arabidopsis[J]. Plant Growth Regulation,2013,70(3):207-216.

相似文献/References:

[1]刘臣.HPLC 法同时测定丹参药材中6种活性成分的含量[J].江苏农业科学,2013,41(07):312.
 Liu Chen.Simultaneous determination of 6 active ingredients in Radix Salviae Miltiorrhizae by HPLC method[J].Jiangsu Agricultural Sciences,2013,41(3):312.
[2]孟肖,张红瑞,陈明明,等.海拔对丹参苗期生理特性及农艺性状的影响[J].江苏农业科学,2016,44(04):242.
 Meng Xiao,et al.Effects of altitude on physiological characteristics and agronomic characters of Salvia miltiorrhiza at seedling stage[J].Jiangsu Agricultural Sciences,2016,44(3):242.
[3]兰英,沈晓凤,严铸云,等.不同地理种源丹参根系分泌物的GC-MS比较分析[J].江苏农业科学,2016,44(01):301.
 Lan Ying,et al.GC-MS comparative analysis of root exudates of Salvia miltiorrhiza Bge. from different geographical provenance[J].Jiangsu Agricultural Sciences,2016,44(3):301.
[4]兰英,柳敏,严铸云,等.不同地理种源丹参组培快繁及再生苗性状差异比较[J].江苏农业科学,2016,44(10):103.
 Lan Ying,et al.Study on tissue culture and rapid propagation of Salvia miltiorrhiza Bge. from different geographical provenance and comparison of characteristics variation among different tissue culture regeneration plantlets[J].Jiangsu Agricultural Sciences,2016,44(3):103.
[5]白英豪,张晓丽,李明军.秋水仙素诱导丹参多倍体研究进展[J].江苏农业科学,2018,46(05):18.
 Bai Yinghao,et al.Research progress of polyploidy induction of Salvia miltiorrhiza Bunge. by colchicine[J].Jiangsu Agricultural Sciences,2018,46(3):18.
[6]申顺先,李学慧,梁明勤,等.丹参叶片离体培养体系的建立与优化[J].江苏农业科学,2019,47(12):70.
 Shen Shunxian,et al.Establishment and optimization of in vitro culture system of Salvia miltiorrhiza leaves[J].Jiangsu Agricultural Sciences,2019,47(3):70.
[7]史国玉,曹红,武卫红,等.丹参地上部分热风干燥过程中的水分变化规律[J].江苏农业科学,2021,49(14):166.
 Shi Guoyu,et al.Moisture changes of Salvia miltiorrhiza Bunge. aerial part during hot air drying process[J].Jiangsu Agricultural Sciences,2021,49(3):166.
[8]黄菊英,崔东,刘玉珊,等.丹参根际微生物和连作障碍的研究进展[J].江苏农业科学,2023,51(3):8.
 Huang Juying,et al.Research progress on rhizosphere microorganisms and continuous cropping barrier of Salvia miltiorrhiza[J].Jiangsu Agricultural Sciences,2023,51(3):8.
[9]杨文龙,张小清,杨东风,等.聚谷氨酸对不同施肥水平下丹参幼苗生长和光合生理特性的影响[J].江苏农业科学,2023,51(10):143.
 Yang Wenlong,et al.Impacts of polyglutamic acid (PGA) on growth and photosynthetic physiological characteristics of Salvia miltiorrhiza seedlings under different levels of fertilizer application[J].Jiangsu Agricultural Sciences,2023,51(3):143.

备注/Memo

备注/Memo:
收稿日期:2023-04-11
基金项目:中央本级重大增减支项目(编号:2060302);国家现代农业产业技术体系建设专项(编号:CARS-21);河北省重点研发计划专项(编号:22326301D)。
作者简介:龚婷(1997—),女,四川资阳人,硕士,主要从事中药材分子生物学研究。E-mail:1411742974@qq.ccom。
通信作者:姜涛,副研究员,博士,主要从事药用植物育种等工作。E-mail:jttaojiang@163.com。
更新日期/Last Update: 2024-03-05