|本期目录/Table of Contents|

[1]邵继锋,车景,董晓英,等.不同基因型玉米耐铝特性比较[J].江苏农业科学,2015,43(01):61-64.
 Shao Jifeng,et al.Comparison of aluminum tolerance characteristics among different genotypes of maize[J].Jiangsu Agricultural Sciences,2015,43(01):61-64.
点击复制

不同基因型玉米耐铝特性比较(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第43卷
期数:
2015年01期
页码:
61-64
栏目:
遗传育种与耕作栽培
出版日期:
2015-01-25

文章信息/Info

Title:
Comparison of aluminum tolerance characteristics among different genotypes of maize
作者:
邵继锋12 车景12 董晓英1 沈仁芳1
1.中国科学院南京土壤研究所/土壤与农业可持续发展国家重点实验室,江苏南京 210008; 2.中国科学院大学,北京 100049
Author(s):
Shao Jifenget al
关键词:
玉米铝毒害铝敏感型铝耐受型
Keywords:
-
分类号:
S513.034
DOI:
-
文献标志码:
A
摘要:
以相对根伸长率为指标,对26个玉米基因型进行耐铝特性筛选。结果表明:26个供试基因型中,农大4967相对根伸长率最大,郑单2201相对根伸长率最小。比较了铝处理下农大4967、郑单2201根尖铝和胼胝质含量,发现农大4967根尖铝和胼胝质含量显著小于郑单2201。苏木精染色及桑色素荧光染色观察表明,农大4967根表和横切面铝的分布都低于郑单2201,且铝主要积累在根表。以上结果表明,农大4967为铝耐受型基因型,郑单2201是铝敏感型基因型,玉米耐铝机制以外排机制为主。
Abstract:
-

参考文献/References:

[1]Kochian L V. Cellular mechanisms of aluminum toxicity and resistance in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1995,46:237-260.
[2]熊毅,李庆逵. 中国土壤[M]. 北京:科学出版,1987.
[3]Kochian L V,Hoekenga O A,Pineros M A. How do crop plants tole-rate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency[J]. Annual Review of Plant Biology,2004,55:459-493.
[4]郑爱珍,李春喜. 酸性红壤铝毒对植物的影响及其改良[J]. 湖北农业科学,2004(6):41-43.
[5]许玉凤,曹敏建,王文元,等. 玉米耐铝毒的基因型筛选[J]. 玉米科学,2004,12(1):33-35.
[6]刁锐琦,钱晓刚. 利用水培筛选玉米氮高效种质资源的研究[J]. 种子,2008,27(4):28-30.
[7]Samac D A,Tesfaye M. Plant improvement for tolerance to aluminum in acid soils-a review[J]. Plant Cell Tissue and Organ Culture,2003,75(3):189-207.
[8]林咸永,章永松,罗安程.不同小麦基因型耐铝性的差异及筛选方法的研究[J]. 植物营养与肥料学报,2001,7(1):64-70.
[9]万延慧,年海,严小龙. 大豆种质耐低磷与耐铝毒部分指标及其相互关系的研究[J]. 植物营养与肥料学报,2001,7(2):199-204.
[10]Blancaflor E B,Jones D L,Gilroy S. Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize[J]. Plant Physiology,1998,118(1):159-172.
[11]Kochian L V,Pineros M A,Hoekenga O A. The physiology,genetics and molecular biology of plant aluminum resistance and toxicity[J]. Plant and Soil,2005,274(1/2):175-195.
[12]Osawa H,Matsumoto H. Possible involvement of protein phosphorylation in aluminum-responsive malate efflux from wheat root apex[J]. Plant Physiology,2001,126(1):411-420.
[13]Kohle H,JeblickW,Poten F,et al. Chitosan-elicited callose synthesis in soybean cells as a Ca2+-dependent process[J]. Plant Physiology,1985,77(3):544-551.
[14]Rincon M,Gonzales R A. Aluminum partitioning in intact roots of aluminum tolerant and aluminum sensitive wheat (Triticum aestivum L.) cultiars[J]. Plant Physiology,1992,99:1021-1028.
[15]Ticek R,Parker D R,Demason D A. Operationally defined apoplastic and symplastic aluminum fractions in root tips of aluminum-intoxicated wheat[J]. Plant Physiology,1992,100:309-318.
[16]Llugany M,Poschenrieder C,Barcelo J. Monitoring of aluminum-induced inhibition of root elongation in four maize cultivars differing in tolerance to aluminum and proton toxicity[J]. Physiologia Plantarum,1995,93(2):265-271.
[17]Delhaize E,Ryan P R. Aluminum toxicity and tolerance in plants[J]. Plant Physiology,1995,7:315-321.
[18]Ryan P R,Ditomaso J M,Kochian L. Aluminum toxicity in roots:an investigation of spatial sensitivity and the role of the root cap[J]. Journal of Experimental Botany,1993,44(259):437-446.
[19]Wissemeier A H,Horst W J. Effect of Calcium supply on aluminum-induced callose formation,its distribution and persistence in roots of soybean (Glycine-Max (L) Merr)[J]. Journal of Plant Physiology,1995,145(4):470-476.
[20]Zhang G,Hoddinott J,Taylor G J. Characterization of 1,3-β-D-glucan(callose)synthesis in roots of Triticum aestivum in response to Aluminum toxicity[J]. Plant Physiology,1994,144:229-234.
[21]Rincon M,Gonzalesr A. Aluminum partitioning in intact roots of aluminum tolerant and aluminum sensitive wheat(Triticum aestivum L.)cultivars[J]. Plant Physiology,1992,99:1021-1028.
[22]Giaveno C D,Miranda J B. Rapid screening for aluminum tolerance in maize(Zea mays L.)[J]. Genetics and Molecular Biology,2000,23:847-850.
[23]Wagatsuma T. Characterization of absorption sites for aluminum in the roots[J]. Soil Science and Plant Nutrition,1983,29(4):499-515.
[24]Zheng S J,Yang J L,He Y F,et al. Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat[J]. Plant Physiology,2005,138(1):297-303.
[25]李德华,贺立源,李建生,等. 不同基因型玉米根系对铝胁迫反应的差异研究[J]. 华中农业大学学报,2003,22(4):365-369.
[26]孙清斌,沈仁芳,赵学强. 不同参数评价植物耐铝性的研究[J]. 植物营养与肥料学报,2008,14(5):1017-1022.
[27]Miyasaka S,Bute J,Howell R,et al. Mechanisms of aluminum tolerance in snapbeans. root exudation of citric acid[J]. Plant Physiology,1991,96:737-743.
[28]Delhaize E,Ryan P R,Randall P J. Aluminum tolerance in wheat(Triticum aestivum L.):Ⅱ.Aluminum-stimulated excretion of malic acid from root apices[J]. Plant Physiology,1993,103:695-702.
[29]Zheng S J,Ma J F,Matsumoto H. High aluminum resistance in buckwheat:Al-induced specific secretion of oxalic acid from root tips[J]. Plant Physiology,1998,117:745-751.
[30]Pellet D M,Papernik L,Kochian L. Multiple aluminum-resistance mechanisms in wheat. Roles of root apical phosphate and malate exudation[J]. Plant Physiology,1996,112:591-597.
[31]Papernik L A,Bethea A S,Singleton T E,et al. Physiological basis of reduced Al tolerance in ditelosomic lines of Chinese Spring wheat[J]. Planta,2001,212(5/6):829-834.
[32]Pellet D M,Grunes D L,Kochian L V. Organic acid exudation as an aluminum tolerance mechanism in maize(Zea mays L.)[J]. Planta,1995,196:788-795.
[33]Jorge R,Arruda P. Aluminum-induced organic acid exudation by roots of an aluminum-tolerant tropic Al maize[J]. Phytochemistry,1997,45(4):675-681.
[34]Cancado G A,Loguercio I L,Martins P R,et al. Hematoxylin staining as a phenotypic index for aluminum tolerance selection in tropical maize(Zea mays L.)[J]. Theor Appl Cenet,1999,99(5):747-754.
[35]Aniol A,Gustafson J P. Chromosome location of genes controlling aluminum tolerance in wheat,rye and triticale[J]. Canadian Journal of Genetics and Cytology,1984,26(6):701-705.
[36]Luo M,Dvorak J. Molecular mapping of an aluminum tolerance locus on chromosome 4D of Chinese Spring wheat[J]. Euphytica,1996,91(1):31-35.
[37]Minella E,Sorrells M E. Aluminum tolerance in barley genetic relationships among genotypes of diverse origin[J]. Crop Science,1992,32:593-598.
[38]Nguyen B D,Brar D S,Bui B C,et al. Identification and mapping of the QTL for aluminum tolerance introgressed from the new source,Oryza rufipogon Griff.,into indica rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics,2003,106(4):583-593.
[39]Gallego F J,Benito C. Genetic control of aluminium tolerance in rye (Secale cereale L.)[J]. Theoretical and Applied Genetics,1997,95(3):393-399.
[40]Mullet J,Klein R,Klein P. Sorghum bicolor—an important species for comparative grass genomics and a source of beneficial genes for agriculture[J]. Current Opinion in Plant Biology,2001,5:118-121.
[41]Ninamango C,Guimaraes C T,Martins P R,et al. Mapping QTLs for aluminum tolerance in maize[J]. Euphytica,2003,130:223-232.

相似文献/References:

[1]孙建伟.水涝胁迫对玉米细胞保护酶同工酶的影响[J].江苏农业科学,2013,41(04):85.
[2]刘荣,张卫建,齐华,等.密植型玉米“中单909”高产群体结构特征[J].江苏农业科学,2013,41(05):56.
 Liu Rong,et al.Study on high yield population structure of close planting maize cultivar “Zhongdan 909”[J].Jiangsu Agricultural Sciences,2013,41(01):56.
[3]沈浜凯,肖龙云,冯乃杰,等.黄腐酸和AM真菌对玉米幼苗抗旱性的影响[J].江苏农业科学,2013,41(05):64.
 Shen Bangkai,et al.Effects of fulvic acid and AM fungi on drought resistance of maize seedlings[J].Jiangsu Agricultural Sciences,2013,41(01):64.
[4]张金然,缑艳霞,孙丽鹏.固氮螺菌157对玉米、向日葵的促生长作用[J].江苏农业科学,2014,42(12):116.
 Zhang Jinran,et al.Effects of Azospirillum 157 on growth of maize and sunflower[J].Jiangsu Agricultural Sciences,2014,42(01):116.
[5]白小军,吴燕,牛艳,等.玉米中乙草胺和莠去津残留量GC-MS/MS分析法的建立[J].江苏农业科学,2014,42(11):334.
 Bai Xiaojun,et al().Establishment of GC-MS/MS analysis method of acetochlor and atrazine residues in maize[J].Jiangsu Agricultural Sciences,2014,42(01):334.
[6]邹晓威,王娜,刘芬,等.玉米抗病相关基因在玉米与玉米丝黑穗病菌、玉米黑粉病菌互作过程中的表达差异分析[J].江苏农业科学,2014,42(11):150.
 Zou Xiaowei,et al(0).Different expression of resistance-related genes between Sporisorium reilianum and Ustilago maydis interact with corn[J].Jiangsu Agricultural Sciences,2014,42(01):150.
[7]杨洪兴,陈静,陈艳萍.江苏省玉米机械化生产的发展及育种对策思考[J].江苏农业科学,2014,42(11):116.
 Yang Hongxing,et al().Development and breeding strategy of mechanized production of maize in Jiangsu Province[J].Jiangsu Agricultural Sciences,2014,42(01):116.
[8]张丽妍,霍剑锋,孟繁盛,等.不同肥料、施肥水平及施用方法对玉米产量、性状及效益的影响[J].江苏农业科学,2014,42(11):119.
 Zhang Liyan,et al (9).Effects of different fertilizers,fertilizer levels and fertilizing methods on yield,characters and benefit of maize[J].Jiangsu Agricultural Sciences,2014,42(01):119.
[9]王雷,崔震海,张立军.玉米C4型PEPC全长基因的克隆与表达载体构建[J].江苏农业科学,2014,42(11):26.
 Wang Lei,et al().Cloning and expression vector construction of full-length C4 type PEPC gene in maize[J].Jiangsu Agricultural Sciences,2014,42(01):26.
[10]雷恩,赵光明,刘艳红.不同稀释浓度松土保水剂对玉米营养生长的影响[J].江苏农业科学,2013,41(06):77.
 Lei En,et al.Effect of different dilutions of super absorbent polymer on vegetative growth of maize[J].Jiangsu Agricultural Sciences,2013,41(01):77.

备注/Memo

备注/Memo:
收稿日期:2014-03-29
基金项目:国家自然科学基金(编号:41025005)。
作者简介:邵继锋(1983—),男,浙江建德人,博士研究生,从事植物铝毒害和耐铝机制研究。E-mail:brianshao888@gmail.com。
通信作者:沈仁芳,研究员,从事植物营养和逆境生理研究。E-mail:rfshen@issas.ac.cn。
更新日期/Last Update: 2015-01-25