[1]张洪滨,柳金伟,刘秉江,等. 山东省小麦赤霉病菌种群组成及其致病力分化[J]. 植物保护学报,2013,40(1):27-32.
[2]Dean R,van Kan J A,Pretorius Z A,et al. The top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology,2012,13(4):414-430.
[3]龚双军,杨立军,向礼波,等. 2013年湖北省小麦赤霉病菌对多菌灵和戊唑醇的敏感性[J]. 农药学学报,2014,16(5):610-613.
[4]Alcazar-Fuoli L,Mellado E,Garcia-Effron G,et al. Ergosterol biosynthesis pathway in Aspergillus fumigatus[J]. Steroids,2008,73(3):339-347.
[5]Bean T P,Cools H J,Lucas J A,et al. Sterol content analysis suggests altered eburicol 14α-demethylase (CYP51) activity in isolates of Mycosphaerella graminicola adapted to azole fungicides[J]. FEMS Microbiol Lett,2009,296(2):266-273.
[6]Lepesheva G I,Waterman M R. Sterol 14α-demethylase cytochrome P450(CYP51),a P450 in all biological kingdoms[J]. Biochim Biophys Acta,2007,1770(3):467-477.
[7]Ghosoph J M,Schmidt L S,Margosan D A,et al. Imazalil resistance linked to a unique insertion sequence in the PdCYP51 promoter region of Penicillium digitatum[J]. Postharvest Biology and Technology,2007,44(1):9-18.
[8]Mellado E,Garcia-Effron G,Alcázar-Fuoli L,et al. A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations[J]. Antimicrobial Agents and Chemotherapy,2007,51(6):1897-1904.
[9]Snelders E,van der Lee H A L,Kuijpers J,et al. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism[J]. PLoS Medicine,2008,5(11):e219.
[10]Kudo M,Ohi M,Aoyama Y,et al. Effects of Y132H and F145L substitutions on the activity,azole resistance and spectral properties of Candida albicans sterol 14-demethylase P450 (CYP51):a live example showing the selection of altered P450 through interaction with environmental compounds[J]. Journal of Biochemistry,2005,137(5):625-632.
[11]Park H G,Lee I S,Chun Y J,et al. Heterologous expression and characterization of the sterol 14α-demethylase CYP51F1 from Candida albicans[J]. Archives of Biochemistry and Biophysics,2011,509(1):9-15.
[12]Becher R,Wirsel S G. Fungal cytochrome P450 sterol 14α-demethylase (CYP51) and azole resistance in plant and human pathogens[J]. Applied Microbiology and Biotechnology,2012,95(4):825-840.
[13]Morio F,Loge C,Besse B,et al. Screening for amino acid substitutions in the Candida albicans Erg11 protein of azole-susceptible and azole-resistant clinical isolates:new substitutions and a review of the literature[J]. Diagnostic Microbiology and Infectious Disease,2010,66(4):373-384.
[14]Caas-Gutiérrez G P,Angarita-Velásquez M J,Restrepo-Flórez J M,et al. Analysis of the CYP51 gene and encoded protein in propiconazole-resistant isolates of Mycosphaerella fijiensis[J]. Pest Management Science,2009,65(8):892-899.
[15]Wyand R A,Brown J K. Sequence variation in the CYP51 gene of Blumeria graminis associated with resistance to sterol demethylase inhibiting fungicides[J]. Fungal Genetics and Biology,2005,42(8):726-735.
[16]Leroux P,Walker A S. Multiple mechanisms account for resistance to sterol 14α-demethylation inhibitors in field isolates of Mycosphaerella graminicola[J]. Pest Management Science,2011,67(1):44-59.
[17]Stammler G,Cordero J,Koch A,et al. Role of the Y134F mutation in cyp51 and overexpression of cyp51 in the sensitivity response of Puccinia triticina to epoxiconazole[J]. Crop Protection,2009,28(10):891-897.
[18]Mullins J G L,Parker J E,Cools H J,et al. Molecular modelling of the emergence of azole resistance in Mycosphaerella graminicola[J]. PLoS One,2011,6(6):e20973.
[19]Podust L M,Stojan JPoulos T L,Waterman M R. Substrate recognition sites in 14α-sterol demethylase from comparative analysis of amino acid sequences and X-ray structure of Mycobacterium tuberculosis CYP51[J]. J Inorg Biochem,2001,87(4):227-235.
[20]Cools H J,Fraaije B A. Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control[J]. Pest Management Science,2013,69(2):150-155.
[21]Lepesheva G I,Waterman M R. Structural basis for conservation in the CYP51 family[J]. Biochimica et Biophysica acta,2011,1814(1):88-93.
[22]Fan J,Urban M,Parker J E,et al. Characterization of the sterol 14α-demethylases of Fusarium graminearum identifies a novel genus-specific CYP51 function[J]. The New Phytologist,2013,198(3):821-835.
[23]Cuomo C A,Güldener U,Xu J R,et al. The fusarium graminearum genome reveals a Link between localized polymorphism and pathogen specialization[J]. Science,2007,317(5843):1400-1402.
[24]Gasteiger E,Hoogland C,Gattiker A,et al. The proteomics protocols handbook[M]. Totowa,New Jersey:Humana Press,2005:571-607.
[25]Marchler-Bauer A,Lu S,Anderson J B,et al. CDD:a conserved domain database for the functional annotation of proteins[J]. Nucleic Acids Research,2011,39:D225-D229.
[26]Aoyama Y,Noshiro M,Gotoh O,et al. Sterol 14-demethylase P450 (P45014DM*) is one of the most ancient and conserved P450 species[J]. Journal of Biochemistry,1996,119(5):926-933.
[27]Werck-Reichhart D,Feyereisen R. Cytochromes P450:a success story[J]. Genome Biology,2000,1(6):1-9.
[28]Becher R,Weihmann F,Deising H B,et al. Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses[J]. BMC Genomics,2011,12(1):52.
[1]张鹏,邓渊钰,杨学明,等.小麦茎基腐病菌鉴定及不同药剂防治效果分析[J].江苏农业科学,2016,44(11):142.
Zhang Peng,et al.Identification of wheat stem rot pathogen and analysis of control effects of different pesticides[J].Jiangsu Agricultural Sciences,2016,44(03):142.
[2]侯瑞,金巧军.禾谷镰刀菌真菌毒素DON生物合成途径及调控机制研究进展[J].江苏农业科学,2018,46(17):9.
Hou Rui,et al.Research progress of biosynthesis approach and regulatory mechanisms of Fusarium graminearum mycotoxin DON[J].Jiangsu Agricultural Sciences,2018,46(03):9.
[3]张悦,施维,李丹,等.禾谷镰刀菌全基因组候选效应因子预测与分析[J].江苏农业科学,2019,47(06):81.
Zhang Yue,et al.Analysis of candidate effectors from genome of Fusarium graminearum[J].Jiangsu Agricultural Sciences,2019,47(03):81.
[4]曹坤,管明,陈康,等.一株拮抗禾谷镰刀菌和降解呕吐毒素解淀粉芽孢杆菌的筛选及在饲料贮存中的应用[J].江苏农业科学,2019,47(08):179.
Cao Kun,et al.Screening of probiotic Bacillus amyloliquefaciens CPLK1314 with function of antagonizing Fusarium graminearum and degrading vomiting toxin and its application in forage storing[J].Jiangsu Agricultural Sciences,2019,47(03):179.
[5]张强,张艳茹,霍云凤,等.禾谷镰刀菌拮抗菌ZQT-31的分离与鉴定[J].江苏农业科学,2021,49(9):80.
Zhang Qiang,et al.Isolation and identification of antagonistic bacteria ZQT-31 against Fusarium graminearum[J].Jiangsu Agricultural Sciences,2021,49(03):80.
[6]张艳茹,霍云凤,石红利,等.禾谷镰刀菌拮抗菌ZQT-9的鉴定与抑菌活性[J].江苏农业科学,2021,49(18):111.
Zhang Yanru,et al.Identification and antifungal activity of antagonistic bacteria ZQT-9 against Fusarium graminearum[J].Jiangsu Agricultural Sciences,2021,49(03):111.
[7]王子洋,熊雨洁,冯发运,等.寡雄腐霉对禾谷镰刀菌防效及其产孢诱导剂筛选[J].江苏农业科学,2023,51(18):101.
Wang Ziyang,et al.Control effect of Pythium oligandrum against Fusarium graminearum and screening of its pathogen inducers[J].Jiangsu Agricultural Sciences,2023,51(03):101.
[8]张强,张艳茹,霍云凤,等.禾谷镰刀菌拮抗菌21-1的发酵条件及稳定性分析[J].江苏农业科学,2023,51(20):122.
Zhang Qiang,et al.Fermentation conditions and stability of antagonistic actinomycete 21-1 against Fusarium graminearum[J].Jiangsu Agricultural Sciences,2023,51(03):122.
[9]周萍,张弛,荀以仁,等.青稞内生细菌RKZ-05对禾谷镰刀菌的拮抗作用及其分子鉴定[J].江苏农业科学,2023,51(22):113.
Zhou Ping,et al.Antagonism of endophytic bacteria RKZ-05 from highland barley against Fusarium graminearum and its molecular identification[J].Jiangsu Agricultural Sciences,2023,51(03):113.
[10]赵美荣,李永春,张志超.1株拮抗禾谷镰刀菌生防菌株的筛选鉴定[J].江苏农业科学,2024,52(11):128.
Zhao Meirong,et al.Screening and identification of a biocontrol strain against Fusarium graminearum[J].Jiangsu Agricultural Sciences,2024,52(03):128.