|本期目录/Table of Contents|

[1]李夏莹,高鸿飞,刘鹏程,等.转基因作物快速检测技术的研究进展[J].江苏农业科学,2018,46(03):5-9.
 Li Xiaying,et al.Research progress of rapid detection technology of genetically modified crops[J].Jiangsu Agricultural Sciences,2018,46(03):5-9.
点击复制

转基因作物快速检测技术的研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年03期
页码:
5-9
栏目:
专论与综述
出版日期:
2018-02-05

文章信息/Info

Title:
Research progress of rapid detection technology of genetically modified crops
作者:
李夏莹1 高鸿飞2 刘鹏程1 王顥潜1 梁晋刚1 张旭冬1 李文龙1 张秀杰1
1.农业部科技发展中心,北京 100176; 2.中国农业科学院油料作物研究所,湖北武汉 430062
Author(s):
Li Xiayinget al
关键词:
转基因作物快速检测研究进展
Keywords:
-
分类号:
Q785
DOI:
-
文献标志码:
A
摘要:
近年来,转基因作物的种植面积以及相关国际贸易的不断增加,对于转基因生物安全管理提出了更高的要求,而发展转基因作物现场检测和快速筛查技术对于实现转基因的有效监管十分重要。本文通过对转基因作物外源蛋白和外源基因快速检测技术的研究进展进行综述,重点介绍了ELISA、免疫层析分析、生物传感器技术、基因组DNA快速提取技术以及核酸等温扩增技术等在转基因作物快速检测中的最新应用情况,并对不同技术的优缺点进行比较。同时对于转基因快速检测技术研究的发展趋势、发展方向以及目前亟待解决的重点问题做了分析。
Abstract:
-

参考文献/References:

[1]Deisingh A K,Badrie N. Detection approaches for genetically modified organisms in foods[J]. Food Research International,2005,38(6):639-649.
[2]Anklam E,Gadani F,Heinze P,et al. Analytical methods for detection and determination of genetically modified organisms in agricultural crops and plant-derived food products[J]. European Food Research and Technology,2002,214(1):3-26.
[3]姚文国,朱水芳. 转基因食品检验分析技术概述[J]. 粮油食品科技,2003,11(1):26-28.
[4]杨铭铎,张春梅,华庆,等. 转基因食品快速检测技术的研究进展[J]. 食品科学,2004,25(11):424-427.
[5]国际农业生物技术应用服务组织.2016年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程杂志,2017,37(4):1-8.
[6]中华人民共和国农业部.农业转基因生物标识管理办法[Z]. 北京:中华人民共和国农业部,2002.
[7]Xu W,Huang K,Deng A,et al. Enzyme linked immunosorbent assay for PAT protein detection in genetically modified rape[J]. Chinese Journal of Agricultural Biotechnology,2006,3:177-181.
[8]Tan G Y,Nan T G,Gao W,et al. Development of monoclonal Antibody-Based sensitive sandwich ELISA for the detection of antinutritional factor cowpea trypsin inhibitor[J]. Food Analytical Methods,2013,6(2):614-620.
[9]Zou Z X,Du D,Wang J,et al. Quantum dot-based immunochromatographic fluorescent biosensor for biomonitoring trichloropyridinol,a biomarker of exposure to chlorpyrifos[J]. Analytical Chemistry,2010,82(12):5125-5133.
[10]Du D,Wang J,Wang L M,et al. Integrated lateral flow test strip with electrochemical sensor for quantification of phosphorylated cholinesterase:biomarker of exposure to organophosphorus agents[J]. Analytical Chemistry,2012,84(3):1380-1385.
[11]Liu C Y,Jia Q J,Yang C H,et al. Lateral flow immunochromatographic assay for sensitive pesticide detection by using Fe3O4 nanoparticle aggregates as color reagents[J]. Analytical Chemistry,2011,83(17):6778-6784.
[12]Lin Y Y,Wang J,Liu G D,et al. A nanoparticle label/immunochromatographic electrochemical biosensor for rapid and sensitive detection of prostate-specific antigen[J]. Biosensors and Bioelectronics,2008,23(11):1659-1665.
[13]Xu Y,Huang Z B,He Q H,et al. Development of an immunochromatographic strip test for the rapid detection of deoxynivalenol in wheat and maize[J]. Food Chemistry,2010,119(2):834-839.
[14]Tang Y,Zhai Y F,Xiang J J,et al. Colloidal gold probe-based immunochromatographic assay for the rapid detection of lead ions in water samples[J]. Environmental Pollution,2010,158(6):2074-2077.
[15]Zhou S H,Cui S J,Chen C M,et al. Development and validation of an immunogold chromatographic test for on-farm detection of PRRSV[J]. Journal of Virological Methods,2009,160(1/2):178-184.
[16]van den Bulcke M,de Schrijver A,de Bernardi D,et al. Detection of genetically modified plant products by protein strip testing:an evaluation of real-life samples[J]. European Food Research and Technology,2007,225(1):49-57.
[17]Kumar R,Singh C K,Kamle S,et al. Development of nanocolloidal gold based immunochromatographic assay for rapid detection of transgenic vegetative insecticidal protein in genetically modified crops[J]. Food Chemistry,2010,122:1298-1303.
[18]Takalkar S,Baryeh K,Liu Guodong. Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA[J]. Biosensors and Bioelectronics,2017,98:147-154.
[19]Liu W J,Zhang M F,Liu X Y,et al. A Point-of-Need infrared mediated PCR platform with compatible lateral flow strip for HPV detection[J]. Biosensors and Bioelectronics,2017,96:213-219.
[20]Kalogianni D P,Koraki T,Christopoulos T K,et al. Nanoparticle-based DNA biosensor for visual detection of genetically modified organisms[J]. Biosensors and Bioelectronics,2006,21(7):1069-1076.
[21]Cheng N,Shang Y,Xu Y C,et al. On-site detection of stacked genetically modified soybean based on event-specific TM-LAMP and a DNAzyme-lateral flow biosensor[J]. Biosensors and Bioelectronics,2017,91:408-416.
[22]Huang L,Zheng L,Chen Y J,et al. A novel GMO biosensor for rapid ultrasensitive and simultaneous detection of multiple DNA components in GMO products[J]. Biosensors and Bioelectronics,2015,66:431-437.
[23]Kalogianni D P,Koraki T,Christopoulos T K,et al. Nanoparticle-based DNA biosensor for visual detection of genetically modified organisms[J]. Biosensors and Bioelectronics,2006,21(7):1069-1076.
[24]Li Y Q,Sun L,Liu Q,et al. Photoelectrochemical CaMV35S biosensor for discriminating transgenic from non-transgenic soybean based on SiO2@CdTe quantum dots core-shell nanoparticles as signal indicators[J]. Talanta,2016,161:211-218.
[25]Mariotti E,Minunni M,Mascini M. Surface plasmon resonance biosensor for genetically modified organisms detection[J]. Analytica Chimica Acta,2002,453(2):165-172.
[26]Mannelli I,Minunni M,Tombelli S,et al. Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection[J]. Biosensors and Bioelectronics,2003,18(2/3):129-140.
[27]Zhou Q,Li G H,Zhang Y J,et al. Highly selective and sensitive electrochemical immunoassay of cry1C using nanobody and π-π stacked graphene oxide/thionine assembly[J]. Analytical Chemistry,2016,88(19):9830-9836.
[28]Zhang M,Liu Y N,Chen L L,et al. One simple DNA extraction device and its combination with modified visual loop-mediated isothermal amplification for rapid on-field detection of genetically modified organisms[J]. Analytical Chemistry,2013,85(1):75-82.
[29]Zhen Z,Zhang M H,Yu Y B,et al. Establishment of a loop-mediated isothermal amplification (LAMP) detection method for genetically modified maize MON88017[J]. European Food Research and Technology,2016,242(10):1787-1793.
[30]Wang C,Li R,Quan S,et al. GMO detection in food and feed through screening by visual loop-mediated isothermal amplification assays[J]. Analytical and Bioanalytical Chemistry,2015,407(16):4829-4834.
[31]Huang X,Chen L L,Xu J M,et al. Rapid visual detection of phytase gene in genetically modified maize using loop-mediated isothermal amplification method[J]. Food Chemistry,2014,156:184-189.
[32]Shao N,Chen J W,Hu J Y,et al. Visual detection of multiple genetically modified organisms in a capillary array[J]. Lab on a Chip,2017,17(3):521-529.
[33]Shen P L,Geng F Z,Yu Y,et al. A rapid loop-mediated isothermal amplification method for detection of the modified GM cry1A gene in transgenic insect-resistant cotton and rice[J]. Food Control,2016,62:357-364.

相似文献/References:

[1]袁鑫,谢峰,陈蓓蓓,等.表面增强拉曼光谱技术快速测定辣椒粉中的苏丹红Ⅰ号[J].江苏农业科学,2013,41(04):269.
[2]张涛涛,王兰,龚频,等.环介导等温扩增技术快速检测金黄色葡萄球菌[J].江苏农业科学,2014,42(02):238.
 Zhang Taotao,et al.Rapid detection of Staphylococcus aureus by loop-mediated isothermal amplification technology[J].Jiangsu Agricultural Sciences,2014,42(03):238.
[3]许晔,宋亮.1种快速检测乳及乳制品中皮革水解蛋白的方法[J].江苏农业科学,2014,42(02):264.
 Xu Ye,et al.A rapid detection method of leather hydrolyzed protein in milk and dairy products[J].Jiangsu Agricultural Sciences,2014,42(03):264.
[4]张月义,陈太义,宋明顺,等.转基因作物产业化动力机制——基于动态博弈的策略分析[J].江苏农业科学,2016,44(02):446.
 Zhang Yueyi,et al.Study on dynamic mechanism of GM crops industrialization—Based on strategic analysis of sequential game[J].Jiangsu Agricultural Sciences,2016,44(03):446.
[5]王建忠,郭春景,李娜,等.改进的QuEChERS方法结合UPLC-MS/MS同时快速检测8种蔬菜中77种农药残留[J].江苏农业科学,2014,42(04):248.
 Wang Jianzhong,et al.Rapid simultaneous determination of 77 kinds of pesticide residues in 8 kinds of vegetables by improved QuEChERS combined with UPLC-MS/MS[J].Jiangsu Agricultural Sciences,2014,42(03):248.
[6]李会,任志莹,王颖,等.多重PCR法快速检测转基因玉米多种转化体技术优势的比较分析[J].江苏农业科学,2014,42(05):57.
 Li Hui,et al.Comparative analysis of technology advantage of multiple PCR method for rapid detection of genetically modified maize[J].Jiangsu Agricultural Sciences,2014,42(03):57.
[7]吴燕,吴瑞梅,黄双根,等.茶叶中多菌灵残留的SERS快速检测[J].江苏农业科学,2015,43(09):338.
 Wu Yan,et al.Rapid detection of carbendazim residues in tea by surface-enhanced raman spectroscopy[J].Jiangsu Agricultural Sciences,2015,43(03):338.
[8]邵改革,闫伟,夏蔚,等.转基因作物中常见Bt基因PCR检测方法的建立[J].江苏农业科学,2017,45(12):31.
 Shao Gaige,et al.Establishment of PCR detection method for common Bt genes in genetically modified crops[J].Jiangsu Agricultural Sciences,2017,45(03):31.
[9]吴燕,彭芳,吴斌,等.基于SERS技术的茶叶中乐果农药残留的快速检测[J].江苏农业科学,2017,45(14):160.
 Wu Yan,et al.Rapid detection of dimethoate residues in tea by surface-enhanced Raman spectroscopy[J].Jiangsu Agricultural Sciences,2017,45(03):160.
[10]费聪,王维成,李阳阳,等.利用Greenseeker法诊断甜菜氮素营养状况[J].江苏农业科学,2018,46(04):128.
 Fei Cong,et al.Nitrogen nutrition analysis of sugar beet by Greenseeker[J].Jiangsu Agricultural Sciences,2018,46(03):128.

备注/Memo

备注/Memo:
收稿日期:2017-10-19
基金项目:国家科技重大专项(编号:2016ZX08012003)。
作者简介:李夏莹(1986—),女,云南玉溪人,博士,农艺师,主要从事转基因检测技术研究。E-mail:esmacloed006@163.com。
通信作者:张秀杰,硕士,副研究员,主要从事转基因检测技术研究。E-mail:zhxj7410@sina.com。
更新日期/Last Update: 2018-02-05