[1]Deisingh A K,Badrie N. Detection approaches for genetically modified organisms in foods[J]. Food Research International,2005,38(6):639-649.
[2]Anklam E,Gadani F,Heinze P,et al. Analytical methods for detection and determination of genetically modified organisms in agricultural crops and plant-derived food products[J]. European Food Research and Technology,2002,214(1):3-26.
[3]姚文国,朱水芳. 转基因食品检验分析技术概述[J]. 粮油食品科技,2003,11(1):26-28.
[4]杨铭铎,张春梅,华庆,等. 转基因食品快速检测技术的研究进展[J]. 食品科学,2004,25(11):424-427.
[5]国际农业生物技术应用服务组织.2016年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程杂志,2017,37(4):1-8.
[6]中华人民共和国农业部.农业转基因生物标识管理办法[Z]. 北京:中华人民共和国农业部,2002.
[7]Xu W,Huang K,Deng A,et al. Enzyme linked immunosorbent assay for PAT protein detection in genetically modified rape[J]. Chinese Journal of Agricultural Biotechnology,2006,3:177-181.
[8]Tan G Y,Nan T G,Gao W,et al. Development of monoclonal Antibody-Based sensitive sandwich ELISA for the detection of antinutritional factor cowpea trypsin inhibitor[J]. Food Analytical Methods,2013,6(2):614-620.
[9]Zou Z X,Du D,Wang J,et al. Quantum dot-based immunochromatographic fluorescent biosensor for biomonitoring trichloropyridinol,a biomarker of exposure to chlorpyrifos[J]. Analytical Chemistry,2010,82(12):5125-5133.
[10]Du D,Wang J,Wang L M,et al. Integrated lateral flow test strip with electrochemical sensor for quantification of phosphorylated cholinesterase:biomarker of exposure to organophosphorus agents[J]. Analytical Chemistry,2012,84(3):1380-1385.
[11]Liu C Y,Jia Q J,Yang C H,et al. Lateral flow immunochromatographic assay for sensitive pesticide detection by using Fe3O4 nanoparticle aggregates as color reagents[J]. Analytical Chemistry,2011,83(17):6778-6784.
[12]Lin Y Y,Wang J,Liu G D,et al. A nanoparticle label/immunochromatographic electrochemical biosensor for rapid and sensitive detection of prostate-specific antigen[J]. Biosensors and Bioelectronics,2008,23(11):1659-1665.
[13]Xu Y,Huang Z B,He Q H,et al. Development of an immunochromatographic strip test for the rapid detection of deoxynivalenol in wheat and maize[J]. Food Chemistry,2010,119(2):834-839.
[14]Tang Y,Zhai Y F,Xiang J J,et al. Colloidal gold probe-based immunochromatographic assay for the rapid detection of lead ions in water samples[J]. Environmental Pollution,2010,158(6):2074-2077.
[15]Zhou S H,Cui S J,Chen C M,et al. Development and validation of an immunogold chromatographic test for on-farm detection of PRRSV[J]. Journal of Virological Methods,2009,160(1/2):178-184.
[16]van den Bulcke M,de Schrijver A,de Bernardi D,et al. Detection of genetically modified plant products by protein strip testing:an evaluation of real-life samples[J]. European Food Research and Technology,2007,225(1):49-57.
[17]Kumar R,Singh C K,Kamle S,et al. Development of nanocolloidal gold based immunochromatographic assay for rapid detection of transgenic vegetative insecticidal protein in genetically modified crops[J]. Food Chemistry,2010,122:1298-1303.
[18]Takalkar S,Baryeh K,Liu Guodong. Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA[J]. Biosensors and Bioelectronics,2017,98:147-154.
[19]Liu W J,Zhang M F,Liu X Y,et al. A Point-of-Need infrared mediated PCR platform with compatible lateral flow strip for HPV detection[J]. Biosensors and Bioelectronics,2017,96:213-219.
[20]Kalogianni D P,Koraki T,Christopoulos T K,et al. Nanoparticle-based DNA biosensor for visual detection of genetically modified organisms[J]. Biosensors and Bioelectronics,2006,21(7):1069-1076.
[21]Cheng N,Shang Y,Xu Y C,et al. On-site detection of stacked genetically modified soybean based on event-specific TM-LAMP and a DNAzyme-lateral flow biosensor[J]. Biosensors and Bioelectronics,2017,91:408-416.
[22]Huang L,Zheng L,Chen Y J,et al. A novel GMO biosensor for rapid ultrasensitive and simultaneous detection of multiple DNA components in GMO products[J]. Biosensors and Bioelectronics,2015,66:431-437.
[23]Kalogianni D P,Koraki T,Christopoulos T K,et al. Nanoparticle-based DNA biosensor for visual detection of genetically modified organisms[J]. Biosensors and Bioelectronics,2006,21(7):1069-1076.
[24]Li Y Q,Sun L,Liu Q,et al. Photoelectrochemical CaMV35S biosensor for discriminating transgenic from non-transgenic soybean based on SiO2@CdTe quantum dots core-shell nanoparticles as signal indicators[J]. Talanta,2016,161:211-218.
[25]Mariotti E,Minunni M,Mascini M. Surface plasmon resonance biosensor for genetically modified organisms detection[J]. Analytica Chimica Acta,2002,453(2):165-172.
[26]Mannelli I,Minunni M,Tombelli S,et al. Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection[J]. Biosensors and Bioelectronics,2003,18(2/3):129-140.
[27]Zhou Q,Li G H,Zhang Y J,et al. Highly selective and sensitive electrochemical immunoassay of cry1C using nanobody and π-π stacked graphene oxide/thionine assembly[J]. Analytical Chemistry,2016,88(19):9830-9836.
[28]Zhang M,Liu Y N,Chen L L,et al. One simple DNA extraction device and its combination with modified visual loop-mediated isothermal amplification for rapid on-field detection of genetically modified organisms[J]. Analytical Chemistry,2013,85(1):75-82.
[29]Zhen Z,Zhang M H,Yu Y B,et al. Establishment of a loop-mediated isothermal amplification (LAMP) detection method for genetically modified maize MON88017[J]. European Food Research and Technology,2016,242(10):1787-1793.
[30]Wang C,Li R,Quan S,et al. GMO detection in food and feed through screening by visual loop-mediated isothermal amplification assays[J]. Analytical and Bioanalytical Chemistry,2015,407(16):4829-4834.
[31]Huang X,Chen L L,Xu J M,et al. Rapid visual detection of phytase gene in genetically modified maize using loop-mediated isothermal amplification method[J]. Food Chemistry,2014,156:184-189.
[32]Shao N,Chen J W,Hu J Y,et al. Visual detection of multiple genetically modified organisms in a capillary array[J]. Lab on a Chip,2017,17(3):521-529.
[33]Shen P L,Geng F Z,Yu Y,et al. A rapid loop-mediated isothermal amplification method for detection of the modified GM cry1A gene in transgenic insect-resistant cotton and rice[J]. Food Control,2016,62:357-364.
[1]袁鑫,谢峰,陈蓓蓓,等.表面增强拉曼光谱技术快速测定辣椒粉中的苏丹红Ⅰ号[J].江苏农业科学,2013,41(04):269.
[2]张涛涛,王兰,龚频,等.环介导等温扩增技术快速检测金黄色葡萄球菌[J].江苏农业科学,2014,42(02):238.
Zhang Taotao,et al.Rapid detection of Staphylococcus aureus by loop-mediated isothermal amplification technology[J].Jiangsu Agricultural Sciences,2014,42(03):238.
[3]许晔,宋亮.1种快速检测乳及乳制品中皮革水解蛋白的方法[J].江苏农业科学,2014,42(02):264.
Xu Ye,et al.A rapid detection method of leather hydrolyzed protein in milk and dairy products[J].Jiangsu Agricultural Sciences,2014,42(03):264.
[4]张月义,陈太义,宋明顺,等.转基因作物产业化动力机制——基于动态博弈的策略分析[J].江苏农业科学,2016,44(02):446.
Zhang Yueyi,et al.Study on dynamic mechanism of GM crops industrialization—Based on strategic analysis of sequential game[J].Jiangsu Agricultural Sciences,2016,44(03):446.
[5]王建忠,郭春景,李娜,等.改进的QuEChERS方法结合UPLC-MS/MS同时快速检测8种蔬菜中77种农药残留[J].江苏农业科学,2014,42(04):248.
Wang Jianzhong,et al.Rapid simultaneous determination of 77 kinds of pesticide residues in 8 kinds of vegetables by improved QuEChERS combined with UPLC-MS/MS[J].Jiangsu Agricultural Sciences,2014,42(03):248.
[6]李会,任志莹,王颖,等.多重PCR法快速检测转基因玉米多种转化体技术优势的比较分析[J].江苏农业科学,2014,42(05):57.
Li Hui,et al.Comparative analysis of technology advantage of multiple PCR method for rapid detection of genetically modified maize[J].Jiangsu Agricultural Sciences,2014,42(03):57.
[7]吴燕,吴瑞梅,黄双根,等.茶叶中多菌灵残留的SERS快速检测[J].江苏农业科学,2015,43(09):338.
Wu Yan,et al.Rapid detection of carbendazim residues in tea by surface-enhanced raman spectroscopy[J].Jiangsu Agricultural Sciences,2015,43(03):338.
[8]邵改革,闫伟,夏蔚,等.转基因作物中常见Bt基因PCR检测方法的建立[J].江苏农业科学,2017,45(12):31.
Shao Gaige,et al.Establishment of PCR detection method for common Bt genes in genetically modified crops[J].Jiangsu Agricultural Sciences,2017,45(03):31.
[9]吴燕,彭芳,吴斌,等.基于SERS技术的茶叶中乐果农药残留的快速检测[J].江苏农业科学,2017,45(14):160.
Wu Yan,et al.Rapid detection of dimethoate residues in tea by surface-enhanced Raman spectroscopy[J].Jiangsu Agricultural Sciences,2017,45(03):160.
[10]费聪,王维成,李阳阳,等.利用Greenseeker法诊断甜菜氮素营养状况[J].江苏农业科学,2018,46(04):128.
Fei Cong,et al.Nitrogen nutrition analysis of sugar beet by Greenseeker[J].Jiangsu Agricultural Sciences,2018,46(03):128.