|本期目录/Table of Contents|

[1]李莉梅,欧阳乐军,尹爱国,等.1种大片段敲除巨桉细胞分裂素氧化酶基因的CRISPR载体构建[J].江苏农业科学,2018,46(12):19-23.
 Li Limei,et al.Construction of eucalyptus genome editing vector by using CRISPR/Cas9 system and knockout Klenow fragment of cytokinin oxidase/dehydrogenase gene[J].Jiangsu Agricultural Sciences,2018,46(12):19-23.
点击复制

1种大片段敲除巨桉细胞分裂素氧化酶基因
的CRISPR载体构建
(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年第12期
页码:
19-23
栏目:
生物技术
出版日期:
2018-06-20

文章信息/Info

Title:
Construction of eucalyptus genome editing vector by using CRISPR/Cas9 system and knockout Klenow fragment of cytokinin oxidase/dehydrogenase gene
作者:
李莉梅 欧阳乐军 尹爱国 韩寒冰 陈凯钊 布良灏 孙同川
广东石油化工学院,广东茂名 525000
Author(s):
Li Limeiet al
关键词:
CRISPR/Cas9基因敲除桉树CKX基因载体构建
Keywords:
-
分类号:
S188
DOI:
-
文献标志码:
A
摘要:
CRISPR-Cas系统是细菌和古细菌在进化过程中逐渐形成的一种适应性免疫系统,通过sgRNA介导对靶位点进行定位并利用Cas酶对核酸实现双链断裂。CRISPR-Cas9系统以其操作简单、效率高等优点被迅速应用到对原核生物和真核生物的基因编辑当中。以巨桉CKX基因为目的基因,构建CRISPR-35S-Cas9植物基因编辑系统大片段敲除巨桉CKX基因的表达载体,重组质粒的PCR鉴定及测序结果表明,含2个Target的重组载体构建成功。研究结果为CRISPR/Cas9系统在桉树功能基因研究及育种中的应用奠定基础。
Abstract:
-

参考文献/References:

[1]Cong L,Ran F A,Cox D,et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science,2013,339(6121):819-823.
[2]Feng Z,Mao Y,Xu N,et al. Multigeneration analysis reveals the inheritance,specificity,and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(12):4357-4358.
[3]Zong Y,Wang Y,Li C,et al. Precise base editing in rice,wheat and maize with a Cas9-cytidine deaminase fusion[J]. Nature Biotechnology,2017,35(5):438-440.
[4]Mao Y F,Botella J R,Zhu J K. Heritability of targeted gene modifications induced by plant-optimized CRISPR systems[J]. Cellular and Molecular Life Sciences,2017,74(6):1075-1093.
[5]Moreno-Mateos M A,Vejnar C E,Beaudoin J D,et al. CRISPRscan:designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo[J]. Nature Methods,2015,12(10):982-988.
[6]Laughery M F,Hunter T,Brown A,et al. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae[J]. Yeast,2015,32(12):711-720.
[7]Feng Z,Zhang B,Ding W,et al. Efficient genome editing in plants using a CRISPR/Cas system[J]. Cell Research,2013,23(10):1229-1232.
[8]刘丁源,邱婷,丁晓辉,等. 快速构建多重sgRNA载体利用CRISPR/Cas9技术敲除拟南芥IAA2基因[J]. 遗传,2016,38(8):756-764.
[9]Wang H Y,Yang H,Shivalila C S,et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering[J]. Cell,2013,153(4):910-918.
[10]Gao X,Chen J,Dai X,et al. An effective strategy for reliably isolating heritable and Cas9-free Arabidopsis mutants generated by CRISPR/Cas9-mediated genome editing[J]. Plant Physiology,2016,171(3):1794-1800.
[11]Xing H L,Dong L,Wang Z P,et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants[J]. BMC Plant Biology,2014,14:327.
[12]Zhang Z J,Mao Y F,Ha S,et al. A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis[J]. Plant Cell Reports,2016,35(7):1519-1533.
[13]Doudna J A,Charpentier E. The new frontier of genome engineering with CRISPR-Cas9[J]. Science,2014,346(6213):1258-1296.
[14]Zhang C,Meng X H,Wei X L,et al. Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus[J]. Fungal Genetics and Biology,2016,86:47-57.
[15]Doudna J A,Charpentier E. The new frontier of genome engineering with CRISPR-Cas9[J]. Science,2014,346(6213):1258096.
[16]Ouyang L J,Li L M. Effects of an inducible aiiA gene on disease resistance in Eucalyptus urophylla×Eucalyptus grandis[J]. Transgenic Research,2016,25(4):441-452.
[17]沙月娥,欧阳乐军,彭舒,等. 桉树胚状体再生与遗传转化的研究进展[J]. 植物生理学报,2012,48(4):325-332.
[18]杨民胜,吴志华,张维耀. 我国环北部湾地区发展桉树的思考[J]. 世界林业研究,2016,29(6):64-69.
[19]Gaj T,Gersbach C A,Barbas C F. ZFN,TALEN,and CRISPR/Cas-based methods for genome engineering[J]. Trends in Biotechnology,2013,31(7):397-405.
[20]Barrangou R. Cas9 targeting and the CRISPR revolution[J]. Science,2014,344(6185):707-708.

相似文献/References:

[1]潘晓寒.模式植物基因功能突变数据库资源报告[J].江苏农业科学,2014,42(02):39.
 Pan Xiaohan.Study on resource of plant genome mutation database[J].Jiangsu Agricultural Sciences,2014,42(12):39.
[2]沈明晨,薛超,乔中英,等.CRISPR/Cas9系统在水稻中的发展和利用[J].江苏农业科学,2019,47(10):5.
 Shen Mingcheng,et al.Development and utilization of CRISPR/Cas9 system in rice[J].Jiangsu Agricultural Sciences,2019,47(12):5.
[3]马斯霜,白海波,惠建,等.CRISPR/Cas9技术及其在水稻和小麦遗传改良中的应用综述[J].江苏农业科学,2019,47(20):29.
 Ma Sishuang,et al.Application of CRISPR/Cas9 technology in rice and wheat genetic improvement:a review[J].Jiangsu Agricultural Sciences,2019,47(12):29.
[4]曹兴林,恽君雯,陈丽,等.基于CRISPR/Cas9系统的MDCK细胞IFN-β1编码序列的敲除[J].江苏农业科学,2020,48(07):59.
 Cao Xinglin,et al.Knockout of IFN-β1 in MDCK cells based on CRISPR/Cas9 system[J].Jiangsu Agricultural Sciences,2020,48(12):59.
[5]张二豪,张杰.CRISPR/Cas9基因编辑技术应用于绿僵菌[J].江苏农业科学,2021,49(11):48.
 Zhang Erhao,et al.CRISPR/Cas9-mediated genome editing in Metarhizium acridum[J].Jiangsu Agricultural Sciences,2021,49(12):48.
[6]夏雄飞,潘俊良,韩长志.CRISPR/Cas9基因编辑技术在植物病原真菌中的应用研究进展[J].江苏农业科学,2022,50(12):22.
 Xia Xiongfei,et al.Research progress on application of CRISPR/Cas9 gene editing technology in plant pathogenic fungi[J].Jiangsu Agricultural Sciences,2022,50(12):22.
[7]闫强,胡亚群,薛冬,等.基于绿豆发状根的快速CRISPR/Cas9基因编辑方法[J].江苏农业科学,2023,51(10):48.
 Yan Qiang,et al.Rapid CRISPR/Cas9 gene editing method based on hairy roots of mung bean[J].Jiangsu Agricultural Sciences,2023,51(12):48.
[8]朱宗财,王志军,高能,等.CRISPR/Cas9基因编辑技术在植物抗病性改良中的应用综述[J].江苏农业科学,2024,52(3):1.
 Zhu Zongcai,et al.Application of CRISPR/Cas9 gene editing technology in improvement of plant disease resistance:a review[J].Jiangsu Agricultural Sciences,2024,52(12):1.
[9]颜静宛,陈子强,周淑芬,等.利用CRISPR/Cas9系统创制水稻品种GW2基因的突变体[J].江苏农业科学,2024,52(3):73.
 Yan Jingwan,et al.Creation of mutants of GW2 gene in rice varieties using CRISPR/Cas9 system[J].Jiangsu Agricultural Sciences,2024,52(12):73.
[10]尤双,曹洋,李村院,等.靶向兔肌肉生长抑制素基因CRISPR/Cas9载体的构建和活性分析[J].江苏农业科学,2018,46(06):34.
 You Shuang,et al.Construction and activity analysis of targeted CRISPR/Cas9 MSTN gene vector[J].Jiangsu Agricultural Sciences,2018,46(12):34.
[11]李星坤,潘慧,李攀,等.基于CRISPR/Cas9系统的拟南芥ugt84a1/ugt84a2双突变体制作及突变位点分析[J].江苏农业科学,2020,48(20):49.
 Li Xingkun,et al.Construction of Arabidopsis ugt84a1/ugt84a2 double mutant and analysis of mutation site based on CRISPR/Cas9 system[J].Jiangsu Agricultural Sciences,2020,48(12):49.

备注/Memo

备注/Memo:
收稿日期:2017-08-03
基金项目:国家自然科学基金(编号:31470677);广东省自然科学基金(编号:2015A030313560、2017A030307017);广东省“扬帆计划”高层次人才项目(编号:201434023);广东省科技计划(编号:2017A030303087);广东省大学生攀登计划(编号:pdjhb0343、pdjhb0338)。
作者简介:李莉梅(1980—),河南沈丘人,硕士,实验师,研究方向为植物分生物学。E-mail:lilimeinh@163.com。
通信作者:欧阳乐军,博士,副教授,研究方向为植物基因工程。E-mail:ouyanglejun@163.com。
更新日期/Last Update: 2018-06-20