|本期目录/Table of Contents|

[1]李苇,张其国,周旭丹,等.模拟增温对玉米叶片生理特性及根区土壤特性的影响[J].江苏农业科学,2018,46(18):77-81.
 Li Wei,et al.Effects of simulated temperature enhancement on maize leaf physiological characteristics and root zone soil characteristics[J].Jiangsu Agricultural Sciences,2018,46(18):77-81.
点击复制

模拟增温对玉米叶片生理特性及根区土壤特性的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年第18期
页码:
77-81
栏目:
遗传育种与耕作栽培
出版日期:
2018-09-20

文章信息/Info

Title:
Effects of simulated temperature enhancement on maize leaf physiological characteristics and root zone soil characteristics
作者:
李苇1 张其国2 周旭丹1 王忠东2
1.吉林农业大学园艺学院,吉林长春 130118; 2.白城职业技术学院,吉林白城 137000
Author(s):
Li Weiet al
关键词:
增温玉米叶片生理特性土壤特性
Keywords:
-
分类号:
S161.2;S513.01
DOI:
-
文献标志码:
A
摘要:
以沈糯3号玉米为研究材料,采用开顶式生长室(open-top chamber,简称OTC)小尺度模拟生态控制试验,连续3年(2014—2016)同步监测模拟增温处理对玉米生长特性及土壤特性的影响,揭示CO2浓度升高对玉米光合生理特性及籽粒产量的影响机理,以期为实现全球气候变化背景下玉米高产优质栽培提供科学依据和理论基础。结果表明,随生长期的变化,OTC和对照CK玉米叶片叶绿素含量、碳水化合物含量和蛋白质含量呈逐渐增加趋势,相同时期均表现为OTC>CK;成熟期玉米株高、茎粗、叶面积指数、百粒质量、穗粒数和穗粒质量均表现为OTC>CK。随着生长期的变化,OTC和CK处理下玉米叶片超氧化物歧化酶、过氧化氢酶、过氧化物酶活性均呈逐渐增加的趋势,其中OTC与CK之间的差异随生长期的进行而逐渐拉大,也即增温处理促进了玉米生长和叶片生理特性的合成,其中在成熟期的促进作用表现最为明显。模拟增温增加了生长期玉米的土壤呼吸和酶活性,随生长期的变化,OTC和CK玉米土壤呼吸和酶活性呈先增加后降低趋势,相同时期玉米土壤呼吸和酶活性均表现为OTC>CK,土壤呼吸速率和酶活性均与土壤温度呈极显著的指数关系。综上,模拟增温促进了玉米的生长发育及根区土壤呼吸速率和酶活性,其中在抽雄期的促进作用表现最为明显。
Abstract:
-

参考文献/References:

[1]Adams R M,Rosenzweig C,Peart R M,et al. Global climate change and US agriculture[J]. Nature,1990,345(6272):219-224.
[2]Adams R M,Hurd B H,Lenhart S,et al. Effects of global climate change on agriculture:an interpretative review[J]. Climate Research,1998,11(1):19-30.
[3]Fernández F J,Blanco M. Modelling the economic impacts of climate change on global and European agriculture.review of economic structural approaches[J]. Economics E-Journal,2015,9(10):1-53.
[4]Kollah B,Patra A K,Mohanty S R. Aquatic microphylla Azolla:a perspective paradigm for sustainable agriculture,environment and global climate change[J]. Environmental Science and Pollution Research,2016,23(5):4358-4369.
[5]Sá J M,Lal R,Cerri C C,et al. Low-carbon agriculture in South America to mitigate global climate change and advance food security[J]. Environment International,2016,98:102-112.
[6]Ren X L,Weitzel M,Oneill B C,et al. Avoided economic impacts of climate change on agriculture:integrating a land surface model (CLM) with a global economic model (iPETS)[J]. Climatic Change,2018,146(3/4):517-531.
[7]Kongsager R,Locatelli B,Chazarin F. Addressing climate change mitigation and adaptation together:a global assessment of agriculture and forestry projects[J]. Environmental Management,2016,57(2):271-282.
[8]Finucane B,Agurto P M,Isbell W H. Human and animal diet at Conchopata,Peru:stable isotope evidence for maize agriculture and animal management practices during the Middle Horizon[J]. Journal of Archaeological Science,2006,33(12):1766-1776.
[9]Perry L,Sandweiss D H,Piperno D R,et al. Early maize agriculture and interzonal interaction in southern Peru[J]. Nature,2006,440(7080):76.
[10]Rusinamhodzi L,Corbeels M,van Wijk M T,et al. A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions[J]. Agronomy for Sustainable Development,2011,31(4):657-673.
[11]李庆康,马克平. 植物群落演替过程中植物生理生态学特性及其主要环境因子的变化[J]. 植物生态学报,2002,26(增刊1):9-19.
[12]葛滢,常杰,王晓月,等. 两种程度富营养化水中不同植物生理生态特性与净化能力的关系[J]. 生态学报,2000,20(6):1050-1055.
[13]邱莉萍,刘军,王益权,等. 土壤酶活性与土壤肥力的关系研究[J]. 植物营养与肥料学报,2004,10(3):277-280.
[14]Adams R M,Hurd B H,Lenhart S,et al. Effects of global climate change on agriculture:an interpretative review[J]. Climate Research,1998,11(1):19-30.
[15]Shi F,Ning W U,Yan W U,et al. Effect of simulated temperature enhancement on growth and photosynthesis of Deschampsia caespitosa and Thlaspi arvense in northwestern Sichuan,China:effect of simulated temperature enhancement on growth and photosynthesis of Deschampsia caespitosa and Thlaspi arvense in northwestem Sichuan,China[J]. Chinese Journal of Applied&Environmental Biology,2009,15(6):750-755.
[16]Guan Y Z,Liu A T,Zhong Q C,et al. Responses of decomposition of Phragmites australis litter to simulated temperature enhancement in the reclamed coastal wetland[J]. Journal of East China Normal University,2013,33(5):27-34.
[17]Yang J,Mizuta S. Detailed analysis of uphill moves in temperature parallel simulated annealing and enhancement of exchange probabilities[J]. Complex Systems,2005,15(4):349-358.
[18]Slipukhina I,Arras E,Mavropoulos P,et al. Simulation of the enhanced Curie temperature in Mn5Ge3Cx compounds[J]. Applied Physics Letters,2009,94(19):235205.
[19]Shariat M,Hosseini S I,Shokri B,et al. Plasma enhanced growth of single walled carbon nanotubes at low temperature:a reactive molecular dynamics simulation[J]. Carbon,2013,65(6):269-276.
[20]Sinsabaugh R L,Lauber C L,Weintraub M N,et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters,2008,11(11):1252-1264.
[21]Wan Z,Wu J. Study progress on factors affecting soil enzyme activity[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry,2005,33:87-91.
[22]Chang E H,Chung R S,Tsai Y H. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population[J]. Soil Science and Plant Nutrition,2007,53(2):132-140.
[23]Boerner R E,Brinkman J A. Fire frequency and soil enzyme activity in southern Ohio oak-hickory forests[J]. Applied Soil Ecology,2003,23(2):137-146.
[24]Deforest J L. The influence of time,storage temperature,and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA[J]. Soil Biology & Biochemistry,2009,41(6):1180-1186.

相似文献/References:

[1]孙建伟.水涝胁迫对玉米细胞保护酶同工酶的影响[J].江苏农业科学,2013,41(04):85.
[2]刘荣,张卫建,齐华,等.密植型玉米“中单909”高产群体结构特征[J].江苏农业科学,2013,41(05):56.
 Liu Rong,et al.Study on high yield population structure of close planting maize cultivar “Zhongdan 909”[J].Jiangsu Agricultural Sciences,2013,41(18):56.
[3]沈浜凯,肖龙云,冯乃杰,等.黄腐酸和AM真菌对玉米幼苗抗旱性的影响[J].江苏农业科学,2013,41(05):64.
 Shen Bangkai,et al.Effects of fulvic acid and AM fungi on drought resistance of maize seedlings[J].Jiangsu Agricultural Sciences,2013,41(18):64.
[4]张金然,缑艳霞,孙丽鹏.固氮螺菌157对玉米、向日葵的促生长作用[J].江苏农业科学,2014,42(12):116.
 Zhang Jinran,et al.Effects of Azospirillum 157 on growth of maize and sunflower[J].Jiangsu Agricultural Sciences,2014,42(18):116.
[5]白小军,吴燕,牛艳,等.玉米中乙草胺和莠去津残留量GC-MS/MS分析法的建立[J].江苏农业科学,2014,42(11):334.
 Bai Xiaojun,et al().Establishment of GC-MS/MS analysis method of acetochlor and atrazine residues in maize[J].Jiangsu Agricultural Sciences,2014,42(18):334.
[6]邹晓威,王娜,刘芬,等.玉米抗病相关基因在玉米与玉米丝黑穗病菌、玉米黑粉病菌互作过程中的表达差异分析[J].江苏农业科学,2014,42(11):150.
 Zou Xiaowei,et al(0).Different expression of resistance-related genes between Sporisorium reilianum and Ustilago maydis interact with corn[J].Jiangsu Agricultural Sciences,2014,42(18):150.
[7]杨洪兴,陈静,陈艳萍.江苏省玉米机械化生产的发展及育种对策思考[J].江苏农业科学,2014,42(11):116.
 Yang Hongxing,et al().Development and breeding strategy of mechanized production of maize in Jiangsu Province[J].Jiangsu Agricultural Sciences,2014,42(18):116.
[8]张丽妍,霍剑锋,孟繁盛,等.不同肥料、施肥水平及施用方法对玉米产量、性状及效益的影响[J].江苏农业科学,2014,42(11):119.
 Zhang Liyan,et al (9).Effects of different fertilizers,fertilizer levels and fertilizing methods on yield,characters and benefit of maize[J].Jiangsu Agricultural Sciences,2014,42(18):119.
[9]王雷,崔震海,张立军.玉米C4型PEPC全长基因的克隆与表达载体构建[J].江苏农业科学,2014,42(11):26.
 Wang Lei,et al().Cloning and expression vector construction of full-length C4 type PEPC gene in maize[J].Jiangsu Agricultural Sciences,2014,42(18):26.
[10]雷恩,赵光明,刘艳红.不同稀释浓度松土保水剂对玉米营养生长的影响[J].江苏农业科学,2013,41(06):77.
 Lei En,et al.Effect of different dilutions of super absorbent polymer on vegetative growth of maize[J].Jiangsu Agricultural Sciences,2013,41(18):77.

备注/Memo

备注/Memo:
收稿日期:2017-03-21
基金项目:吉林省青年启动基金(编号:201319)。
作者简介:李苇(1983—),男,吉林吉林人,硕士,讲师,研究方向为作物栽培学与耕作学。E-mail:Lee_weichina@163.com。
更新日期/Last Update: 2018-09-20