|本期目录/Table of Contents|

[1]张建桃,汤镇安,尹选春,等.液体物理性质对微孔压电超声雾化效果的影响[J].江苏农业科学,2018,46(19):231-237.
 Zhang Jiantao,et al.Effects of liquid physical properties on microporous piezoelectric ultrasonic atomization[J].Jiangsu Agricultural Sciences,2018,46(19):231-237.
点击复制

液体物理性质对微孔压电超声雾化效果的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年第19期
页码:
231-237
栏目:
农业工程与信息技术
出版日期:
2018-10-05

文章信息/Info

Title:
Effects of liquid physical properties on microporous piezoelectric ultrasonic atomization
作者:
张建桃12 汤镇安1 尹选春23 文晟34 兰玉彬23
1.华南农业大学数学与信息学院,广东广州 510642; 2.国际农业航空施药技术联合实验室,广东广州 510642;
3.华南农业大学工程学院,广东广州 510642; 4.华南农业大学工程基础教学与训练中心,广东广州 510642
Author(s):
Zhang Jiantaoet al
关键词:
农用雾化器微孔压电超声雾化物理性质表面张力黏度粒径雾化流量
Keywords:
-
分类号:
S220.1;S491
DOI:
-
文献标志码:
A
摘要:
为明确液体物理性质等对微孔压电超声雾化效果的影响,搭建微孔压电超声雾化效果测试系统,测量液体的表面张力、黏度、微孔直径、驱动频率、驱动电压等对压电微孔超声雾化雾滴粒径、雾化流量的影响,并分析雾化效果的变化趋势。结果表明,随着表面张力的增大,雾滴粒径和雾化流量均增大。随着黏度的增加,雾滴粒径增大,雾化流量减小。雾滴粒径和雾化流量随着微孔直径的增大而明显增大,随着驱动频率的增大呈先增大后减小的趋势,随着驱动电压的升高而先增大后减小。雾化流量达到峰值所对应的驱动频率与雾滴粒径达到峰值时基本吻合,液体的动力黏度越大,雾化所需的功率越大。黏度大的液体可通过增大雾化片微孔直径或提高驱动电压实现微孔压电超声雾化。
Abstract:
-

参考文献/References:

[1]Umemura A. Turbulent atomization subgrid model for two-phase flow large eddy simulation (theoretical development)[J]. Combustion and Flame,2016,165:154-176.
[2]Ramisetty K A,Pandit A B,Gogate P R. Investigations into ultrasound induced atomization[J]. Ultrasonics Sonochemistry,2013,20(1):254-264.
[3]Briceo-Gutierrez D,Salinas-Barrera V,Vargas-Hernández Y,et al. On the ultrasonic atomization of liquids[J]. Physics Procedia,2015,63:37-41.
[4]Ozcelik B K,Ergun C. Synthesis of ZnO nanoparticles by an aerosol process[J]. Ceramics International,2014,40(5):7107-7116.
[5]Chen H,Cheng W L,Peng Y H,et al. Experimental study on optimal spray parameters of piezoelectric atomizer based spray cooling[J]. International Journal of Heat and Mass Transfer,2016,103:57-65.
[6]Rabea H,Ali A M,Eldin R S,et al. Modelling of in-vitro and in-vivo performance of aerosol emitted from different vibrating mesh nebulisers in non-invasive ventilation circuit[J]. European Journal of Pharmaceutical Sciences,2017,97:182-191.
[7]王金鹏,戚兆阳,朱泽森,等. 超声雾化在非过滤式空气净化装置中的应用[J]. 振动·测试与诊断,2016,36(6):1227-1231,1245.
[8]Kono H,Harada T,Takahata D,et al. Ultrasonic atomizing device and pest control method:JP2012283303[P]. 2012-05-20.
[9]彭汝杰. 精细农业的推广与应用[J]. 黑龙江科技信息,2009(34):174.
[10]张建桃,文晟,江定心,等. 超声雾化在超低量喷雾中的应用前景[J]. 中国植保导刊,2014,34(10):67-70.
[11]辻孝三,纪梓桐. 关于农药新制剂的研究[J]. 农药译丛,1989,11(6):24-33.
[12]Maehara N,Ueha S,Mori E. Influence of the vibrating system of a multipinhole‐plate ultrasonic nebulizer on its performance[J]. Review of Scientific Instruments,1986,57(11):2870-2876.
[13]王国辉,周兆英,袁松梅,等. 压电驱动微喷雾化器的研制及实验研究[J]. 仪表技术与传感器,2002(8):37-39.
[14]Dhand R. Nebulizers that use a vibrating mesh or plate with multiple apertures to generate aerosol[J]. Respiratory Care,2002,47(12):1406-1416.
[15]Dhand R. New nebuliser technology-aerosol generation by using a vibrating mesh or plate with multiple apertures[J]. Business briefing:long-therm health care strategies,2003:1-4.
[16]Shen S C. A new cymbal-shaped high power microactuator for nebulizer application[J]. Microelectronic Engineering,2010,87(2):89-97.
[17]Kiyama Y,Tominaga Y,Kanda T,et al. Evaluation of generated micro droplets using micropore plates oscillated by ultrasonic torsional transducers[J]. Sensors and Actuators A-Physical,2012,185(10):92-100.
[18]Percin G,Khuri-Yakub B T. Piezoelectric droplet ejector for ink-jet printing of fluids and solid particles[J]. Review of Scientific Instruments,2003,74(2):1120-1127.
[19]Ghazanfari T,Elhissi A M,Ding Z Y,et al. The influence of fluid physicochemical properties on vibrating-mesh nebulization[J]. International Journal of Pharmaceutics,2007,339(1/2):103-111.
[20]Beck-Broichsitter M,Kleimann P,Gessler T,et al. Nebulization performance of biodegradable sildenafil-loaded nanoparticles using the Aeroneb Pro:formulation aspects and nanoparticle stability to nebulization[J]. International Journal of Pharmaceutics,2012,422(1/2):398-408.
[21]蔡玉飞. 振动微锥孔式雾化器原理及冷却应用研究[D]. 南京:南京航空航天大学,2016:69-71.
[22]Brenn G,Helpio T,Durst F. A new apparatus for the production of monodisperse sprays at high flow rates[J]. Chemical Engineering Science,1997,52(2):237-244.
[23]Wijshoff H. The dynamics of the piezo inkjet printhead operation[J]. Physics Reports,2010,491(4/5):77-177.
[24]Huang C H,Lin Y C,Ma C C. Theoretical analysis and experimental measurement for resonant vibration of piezoceramic circular plates[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,2004,51(1):12-24.
[25]贺文智,陈宇峰,孟庆. 液体雾化机理的研究进展[J]. 内蒙古石油化工,1996(3):13-16.
[26]Percin G,Khuri-Yakub B T. Piezoelectric droplet ejector for ink-jet printing of fluids and solid particles[J]. Review of Scientific Instruments,2003,74(2):1120-1127.
[27]吴晋湘,刘联胜,杨华,等. 雾化过程黏性耗散功分析[J]. 燃烧科学与技术,2000,6(2):166-169.
[28]Clark M M. Drop breakup in a turbulent flow-II. Experiments in a small mixing vessel[J]. Chemical Engineering Science,1988,43(3):681-692.
[29]Brenner M P,Eggers J,Joseph K,et al. Breakdown of scaling in droplet fission at high Reynolds number[J]. Physics of Fluids,1997,9(6):1573-1590.
[30]刘长庚,周兆英,王晓浩,等. 压电驱动微型喷雾器的研究[J]. 压电与声光,2001,23(4):272-274.
[31]曹建明. 喷雾学[M]. 北京:机械工业出版社,2005:11-15.
[32]Mccallion O N,Taylor K M,Thomas M,et al. Nebulization of fluids of different physicochemical properties with air-jet and ultrasonic nebulizers[J]. Pharmaceutical Research,1995,12(11):1682-1688.
[33]刘联胜,吴晋湘,韩振兴,等. 气泡雾化喷嘴在不同液体物性下的喷雾特性研究[J]. 热科学与技术,2002,1(2):128-132.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2018-02-27
基金项目:国家重点研发计划资助项目(编号:2017YFD0701001);国家自然科学基金(编号:6177020045);广东省科技计划项目(编号:2016A020210092,2017B010117010);广东省自然科学基金(编号:2015A030310182)。
作者简介:张建桃(1978—),男,湖南娄底人,博士,副教授,硕士生导师,主要从事精细农业和压电器件方面的研究。Tel:(020)85285396;E-mail:zhangjiantao@
更新日期/Last Update: 2018-10-05