[1]Hinton G E,Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science,2006,313(5786):504-507.
[2]尹宝才,王文通,王立春. 深度学习研究综述[J]. 北京工业大学学报,2015,41(1):48-59.
[3]余凯,贾磊,陈雨强,等. 深度学习的昨天、今天和明天[J]. 计算机研究与发展,2013,50(9):1799-1804.
[4]刘建伟,刘媛,罗雄麟. 深度学习研究进展[J]. 计算机应用研究,2014,31(7):1921-1930,1942.
[5]杨国国,鲍一丹,刘子毅. 基于图像显著性分析与卷积神经网络的茶园害虫定位与识别[J]. 农业工程学报,2017,33(6):156-162.
[6]谭文学,赵春江,吴华瑞,等. 基于弹性动量深度学习神经网络的果体病理图像识别[J]. 农业机械学报,2015,46(1):20-25.
[7]张帅,淮永建. 基于分层卷积深度学习系统的植物叶片识别研究[J]. 北京林业大学学报,2016,38(9):108-115.
[8]鲁恒,付萧,贺一楠,等. 基于迁移学习的无人机影像耕地信息提取方法[J]. 农业机械学报,2015,46(12):274-279,284.
[9]徐明珠,李梅,白志鹏,等. 马铃薯叶片早疫病的高光谱识别研究[J]. 农机化研究,2016,38(6):205-209.
[10]Krizhevsk A. Convolutional deep belief networks on CIFAR-10[EB/OL]. [2017-07-29]. http://www.cs.utoronto.ca/-kriz/conv-cifar10-aug2010.pdf.
[11]Aimonyan K,Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2017-07-29]. http://www.robots.ox.ac.uk:5000/-vgg/publications/2015/Simonyan 15/ simonyan15. pdf.
[12]Szegedy C,Liu W,Jia Y,et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition,2015:1-8.
[13]He K,Zhang X,Ren S,et al. Devling deep into rectifiers:surpassing human-level performance on ImageNet classification[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision,2015:1026-1034.
[14]Grinberg M.Flask Web开发:基于Python的Web应用开发实战[M]. 安道,译. 北京:人民邮电出版社,2015:1-3.
[15]张耀春,黄轶,王静. Vue.js权威指南[M]. 北京:电子工业出版社,2016:1-4.
[16]周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报,2017,40(6):1229-1251.
[17]Girshick R,Donahue J,Darrell T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Patern Recogntion (CVPR),2014:580-587.
[18]Grishick R B. Fast R-CNN[EB/OL]. [2017-07-29]. http://www.cv-foundation.org/openaccess/ content_iccv_2015/papers/Girshick_Fast_R-CNN_ICCV_2015_paper.pdf.
[1]李懿超,沈润平,黄安奇.基于深度学习的湘赣鄂地区植被变化及其影响因子关系模型[J].江苏农业科学,2019,47(03):213.
Li Yichao,et al.Study on relational model between vegetation change and its impact factors based on deep learning in Hunan, Jiangxi and Hubei areas[J].Jiangsu Agricultural Sciences,2019,47(24):213.
[2]刘嘉政.基于深度迁移学习模型的花卉种类识别[J].江苏农业科学,2019,47(20):231.
Liu Jiazheng.Flower species identification based on deep transfer learning model[J].Jiangsu Agricultural Sciences,2019,47(24):231.
[3]魏青迪,范昊,张承明.基于ECLDeeplab模型提取华北地区耕地的方法[J].江苏农业科学,2020,48(04):209.
Wei Qingdi,et al.A method for extracting cultivated land in North China based on ECLDeeplab model[J].Jiangsu Agricultural Sciences,2020,48(24):209.
[4]荆伟斌,胡海棠,程成,等.基于深度学习的地面苹果识别与计数[J].江苏农业科学,2020,48(05):210.
Jing Weibin,et al.Recognition and counting of ground apples based on deep learning[J].Jiangsu Agricultural Sciences,2020,48(24):210.
[5]陈峰,谷俊涛,李玉磊,等.基于机器视觉和卷积神经网络的东北寒地玉米害虫识别方法[J].江苏农业科学,2020,48(18):237.
Chen Feng,et al.Recognition method of corn pests in northeast cold region based on machine vision and convolutional neural network[J].Jiangsu Agricultural Sciences,2020,48(24):237.
[6]罗巍,陈曙东,王福涛,等.基于深度学习的大型食草动物种群监测方法[J].江苏农业科学,2020,48(20):247.
Luo Wei,et al.Monitoring method of large herbivore population based on deep learning[J].Jiangsu Agricultural Sciences,2020,48(24):247.
[7]孙孝龙,徐森,周卫阳,等.基于物联网和深度学习的养蚕智能监控系统设计[J].江苏农业科学,2020,48(21):241.
Sun Xiaolong,et al.Design of an intelligent monitoring system for sericulture based on internet of things and deep learning[J].Jiangsu Agricultural Sciences,2020,48(24):241.
[8]康飞龙,李佳,刘涛,等.多类农作物病虫害的图像识别应用技术研究综述[J].江苏农业科学,2020,48(22):22.
Kang Feilong,et al.Application technology of image recognition for various crop diseases and insect pests: a review[J].Jiangsu Agricultural Sciences,2020,48(24):22.
[9]陈旭君,王承祥,孙福,等.基于改进Faster R-CNN的田间植株幼苗检测方法[J].江苏农业科学,2021,49(4):159.
Chen Xujun,et al.Detection method for plant seedlings in fields based on improved Faster R-CNN[J].Jiangsu Agricultural Sciences,2021,49(24):159.
[10]黎振,陆玲,熊方康.基于k-means分割和迁移学习的番茄病理识别[J].江苏农业科学,2021,49(12):156.
Li Zhen,et al.Tomato pathological recognition based on k-means segmentation and transfer learning[J].Jiangsu Agricultural Sciences,2021,49(24):156.
[11]梁万杰,曹宏鑫.基于卷积神经网络的水稻虫害识别[J].江苏农业科学,2017,45(20):241.
Liang Wanjie,et al.Identification of rice insect pests based on CNN model[J].Jiangsu Agricultural Sciences,2017,45(24):241.
[12]李祥宇,任艳娜,马新明,等.面向小麦生育进程监测的卷积神经网络精简化研究[J].江苏农业科学,2022,50(8):199.
Li Xiangyu,et al.Study on simplified convolutional neural network for monitoring wheat growth process[J].Jiangsu Agricultural Sciences,2022,50(24):199.
[13]路阳,刘婉婷,林立媛,等.CNN与BiLSTM相结合的水稻病害识别新方法[J].江苏农业科学,2023,51(20):211.
Lu Yang,et al.A new method for rice disease identification by combining CNN and BiLSTM[J].Jiangsu Agricultural Sciences,2023,51(24):211.
[14]吕伟,宋轩,杨欢.基于深度学习和多源遥感数据的玉米种植面积提取[J].江苏农业科学,2023,51(23):171.
Lyu Wei,et al.Extraction of maize planting area based on deep learning and multi-source remote sensing data[J].Jiangsu Agricultural Sciences,2023,51(24):171.
[15]方晓捷,严李强,张福豪,等.基于深度学习的农作物图像识别的发展[J].江苏农业科学,2024,52(20):18.
Fang Xiaojie,et al.Development of crop image recognition based on deep learning[J].Jiangsu Agricultural Sciences,2024,52(24):18.
[16]封成智,刘强德,王志伟,等.基于深度学习的番茄叶片病害可视化识别技术研究[J].江苏农业科学,2025,53(5):174.
Feng Chengzhi,et al.Study on visual recognition technology of tomato leaf disease based on deep learning[J].Jiangsu Agricultural Sciences,2025,53(24):174.