|本期目录/Table of Contents|

[1]李懿超,沈润平,黄安奇.基于深度学习的湘赣鄂地区植被变化及其影响因子关系模型[J].江苏农业科学,2019,47(03):213-218.
 Li Yichao,et al.Study on relational model between vegetation change and its impact factors based on deep learning in Hunan, Jiangxi and Hubei areas[J].Jiangsu Agricultural Sciences,2019,47(03):213-218.
点击复制

基于深度学习的湘赣鄂地区植被变化
及其影响因子关系模型
(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第03期
页码:
213-218
栏目:
资源与环境
出版日期:
2019-02-02

文章信息/Info

Title:
Study on relational model between vegetation change and its impact factors based on deep learning in Hunan, Jiangxi and Hubei areas
作者:
李懿超 沈润平 黄安奇
南京信息工程大学地理科学学院,江苏南京 210044
Author(s):
Li Yichaoet al
关键词:
植被变化影响因子深度学习关系模型预测
Keywords:
-
分类号:
S181; S127
DOI:
-
文献标志码:
A
摘要:
构建NDVI及其影响因子之间的关系模型是对区域植被变化进行预测的重要方法之一,然而传统的模型大多通过线性回归方法构建,且主要选取单一影响因子进行模型构建。深度学习是一种有效训练深层神经网络的机器学习算法,具有训练速度快、预测精度高的优点,近年来被应用于图像识别、回归分析等各领域。笔者引入深度学习方法,以气象、土壤、地形等多因子为模型自变量,以MODIS-NDVI为因变量构建关系模型,应用于湘赣鄂地区2005—2015年植被变化的预测中,对所建模型的适用性进行了评价。结果表明:深度学习模型与线性回归模型相比预测精度更高,预测效果更好,NDVI深度学习预测值与原始MODIS-NDVI值的相关系数达到0.804。可见,深度学习具有较强的模型构建及预测能力,能够地对区域植被变化进行有效的预测,进而为作物产量估算、冻害监测、植被覆盖度监测等研究提供帮助。
Abstract:
-

参考文献/References:

[1]殷守敬,陈晓玲,吴传庆,等. 基于时序NDVI的江西省植被覆盖时空变化分析[J]. 华中师范大学学报(自然科学版),2013,47(1):129-135.
[2]熊小菊,廖春贵,胡宝清. 基于遥感数据的广西植被变化特征分析[J]. 科学技术与工程,2018,18(11):123-128.
[3]王磊,王贺,卢艳丽,等. NDVI在农作物监测中的研究与应用[J]. 中国农业资源与区划,2013,34(4):43-50.
[4]吴昌广,周志翔,肖文发,等. 基于MODIS NDVI的三峡库区植被覆盖度动态监测[J]. 林业科学,2012,48(1):22-28.
[5]何月,樊高峰,张小伟,等. 浙江省植被物候变化及其对气候变化的响应[J]. 自然资源学报,2013,28(2):220-233.
[6]李惠敏,刘洪斌,武伟. 近10年重庆市归一化植被指数变化分析[J]. 地理科学,2010,30(1):119-123.
[7]Weiss J L,Gutzler D S,Jea C,et al. Long-term vegetation monitoring with NDVI in a diverse semi-arid setting,central New Mexico,USA[J]. Journal of Arid Environments,2004,58(2):249-272.
[8]Ma M,Veroustraete F. Reconstructing pathfinder AVHRR land NDVI time-series data for the northwest of China[J]. Advances in Space Research,2010,37(4):835-840.
[9]韩雅,朱文博,李双成. 基于GWR模型的中国NDVI与气候因子的相关分析[J]. 北京大学学报(自然科学版),2016,52(6):1125-1133.
[10]Yang S W,Zhang B. Vegetation cover change and its response to climatic factors using SPOT NDVI in Hedong of Gansu Province[J]. Chinese Journal of Ecology,2014,32(10):455-461.
[11]Hinton G E,Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science,2006,313(9):504-507.
[12]Schmidhuber J. Deep learning in neural networks:an overview[J]. Neural Networks,2015,61:85-117.
[13]Dahl G E,Yu D,Deng L,et al. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J]. IEEE Transactions on Audio Speech & Language Processing,2012,20(1):30-42.
[14]Hinton G E,Osindero S,Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation,2014,18(7):1527-1554.
[15]Zhu Z,Wang S,Woodcock C E. Improvement and expansion of the fMask algorithm:cloud,cloud shadow,and snow detection for Landsats 4-7,8,and Sentinel 2 images[J]. Remote Sensing of Environment,2015,159:269-277.
[16]艾治勇. 长江中游地区气候变化特点及双季稻适应性高产栽培技术研究[D]. 长沙:湖南农业大学,2012.
[17]夏文韬,王莺,冯琦胜,等. 甘南地区MODIS土地覆盖产品精度评价[J]. 草业科学,2010,27(9):11-18.
[18]苗晨. 华北平原不同生长发育期农田长势对气候因子的响应研究[D]. 南京:南京信息工程大学,2014.

相似文献/References:

[1]徐洪文,卢妍.土壤碳矿化及活性有机碳影响因子研究进展[J].江苏农业科学,2014,42(10):4.
 Xu Hongwen,et al.Research progress on soil carbon mineralization and factors affecting active organic carbon[J].Jiangsu Agricultural Sciences,2014,42(03):4.
[2]李琴,苏天明,王日升,等.广西设施栽培土壤次生盐渍化调查及其影响因子分析[J].江苏农业科学,2016,44(11):492.
 Li Qin,et al.Survey of secondary salinization of greenhouse soil in Guangxi area and its influencing factor analysis[J].Jiangsu Agricultural Sciences,2016,44(03):492.
[3]汪发元.主要农业生产要素对粮食产量的影响——基于湖北省19年统计数据的分析[J].江苏农业科学,2016,44(12):636.
 Wang Fayuan,et al.Effect of main agricultural production factors on grain output—Based on data analysis of 19 years in Hubei Province[J].Jiangsu Agricultural Sciences,2016,44(03):636.
[4]张勇,王明猛,康静文,等.夏季红枫湖沉积物汞的形态分布特征及其甲基化关键影响因子[J].江苏农业科学,2017,45(01):258.
 Zhang Yong,et al.Morphological distribution characteristics of mercury in sediments of Red Maple Lake in summer and its key factors affecting methylation[J].Jiangsu Agricultural Sciences,2017,45(03):258.
[5]田连生,陈菲.木霉菌可湿性粉剂药效的提高技术[J].江苏农业科学,2017,45(10):97.
 Tian Liansheng,et al.Improving technology of effect of trichoderma wettable powder[J].Jiangsu Agricultural Sciences,2017,45(03):97.
[6]周湘贞,刘晓东.基于Malmquist模型下的农产品流通模式优化[J].江苏农业科学,2017,45(24):309.
 Zhou Xiangzhen,et al.Optimization of domestic agricultural products circulation mode based on Malmquist model[J].Jiangsu Agricultural Sciences,2017,45(03):309.
[7]晏蔚楠,夏建国,陈星燎,等.基于GIS-ESDA的四川省耕地产能分异特征及耕地单产主导因子分析[J].江苏农业科学,2018,46(08):279.
 Yan Weinan,et al.Analysis of characteristics of farmland production differentiation and dominant factor affecting single yield in Sichuan Province based on GIS-ESDA[J].Jiangsu Agricultural Sciences,2018,46(03):279.
[8]王涛.陕北洛河流域降水和植被变化对土壤侵蚀的影响[J].江苏农业科学,2018,46(20):295.
 Wang Tao.Impact of precipitation and vegetation change on soil erosion in Luohe River Basin of northern Shaanxi Province[J].Jiangsu Agricultural Sciences,2018,46(03):295.
[9]杨晓俊,方传珊.渭河水岸带土壤理化特征及其与重金属含量的关系[J].江苏农业科学,2019,47(01):281.
 Yang Xiaojun,et al.Soil physical and chemical characteristics and their relationship with heavy metal contents in the Wei River Basin[J].Jiangsu Agricultural Sciences,2019,47(03):281.
[10]张慧娴,陈铁喜,江晓东,等.中国东部两熟制农田NDVI不对称年际变化趋势及其潜在气候成因[J].江苏农业科学,2019,47(08):242.
 Zhang Huixian,et al.Interannual variation trend of NDVI asymmetry in two cropping farmland in eastern China and its potential climate genesis[J].Jiangsu Agricultural Sciences,2019,47(03):242.

备注/Memo

备注/Memo:
收稿日期:2018-06-23
基金项目:国家自然科学基金重点项目(编号:91437220);国家重点基础研究发展计划(编号:2010CB950700)。
作者简介:李懿超(1992—),男,江苏南京人,硕士研究生,主要从事生态环境遥感研究。E-mail:20141223313@nuist.edu.cn。
通信作者:沈润平,博士,教授,主要从事遥感建模与分析研究。E-mail:rpshen@nuist.edu.cn。
更新日期/Last Update: 2019-02-05