|本期目录/Table of Contents|

[1]曾祥朋,杨清香.噬菌体在环境耐药基因转移中的作用综述[J].江苏农业科学,2019,47(07):14-18.
 Zeng Xiangming,et al.Role of phage in transfer of environmental antibiotic resistant genes:a review[J].Jiangsu Agricultural Sciences,2019,47(07):14-18.
点击复制

噬菌体在环境耐药基因转移中的作用综述(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第07期
页码:
14-18
栏目:
专论与综述
出版日期:
2019-05-10

文章信息/Info

Title:
Role of phage in transfer of environmental antibiotic resistant genes:a review
作者:
曾祥朋1 杨清香12
1.河南师范大学生命科学学院,河南新乡 453007; 2.河南省高校资源微生物与功能分子重点实验室,河南新乡 453007
Author(s):
Zeng Xiangminget al
关键词:
抗生素耐药基因基因水平转移噬菌体转导介导基因转移机制
Keywords:
-
分类号:
X172
DOI:
-
文献标志码:
A
摘要:
耐药细菌随着畜禽粪便排出体外后,其携带的耐药基因可以通过质粒、转座子、整合子等可移动元件传递给其他环境微生物,从而导致耐药基因的传播和扩散。目前对耐药基因转移机制的研究多集中在质粒、转座子、整合子等,对噬菌体在耐药基因传播中的贡献了解甚少。在河流、海洋、污水等自然环境中通过噬菌体转导机制进行基因转移已经被证实,噬菌体作为可移动元件在基因转移和基因重组中的作用频率比人们预想的要高。为了能正确认识噬菌体在畜禽粪便抗生素耐药基因水平传播中的作用,结合国内外相关研究,介绍环境噬菌体的特性及其生态分布、环境噬菌体携带耐药基因情况、噬菌体介导的基因转移机制以及噬菌体在抗生素耐药基因传播中的作用,以期为了解环境噬菌体在耐药基因水平转移中的作用提供参考。
Abstract:
-

参考文献/References:

[1]Hvistendahl M. China takes aim at rampant antibiotic resistance[J]. Science,2012,336(6083):795.
[2]Looft T,Johnson T A,Allen H K,et al. In-feed antibiotic effects on the swine intestinal microbiome[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(5):1691-1696.
[3]Zhu Y G,Johnson T A,Su J Q,et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences,2013,110(9):3435-3440.
[4]Sarmah A K,Meyer M T,Boxall A B. A global perspective on the use,sales,exposure pathways,occurrence,fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere,2006,65(5):725-759.
[5]孙刚,袁守军,计峰,等. 畜禽粪便中抗生素残留危害及其研究进展[J]. 环境与健康杂志,2009,26(3):277-279.
[6]杨凤霞,毛大庆,罗义,等. 环境中抗生素抗性基因的水平传播扩散[J]. 应用生态学报,2013,24(10):2993-3002.
[7]张昊,王盼亮,杨清香. 畜禽粪便中多重耐药细菌及耐药基因研究[J/OL]. 北京:中国科技论文在线(2017-04-26)[2017-09-23]. http://www.paper.edu.cn/releasepaper/content/201704-606.
[8]Marta C L,Juan J,Maite M,et al. Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples[J]. PLoS One,2011,6(3):e17549.
[9]Quiros P,Colomer-Lluch M,Martinez-Castillo A,et al. Antibiotic resistance genes in the bacteriophage DNA fraction of human fecal samples[J]. Antimicrobial Agents and Chemotherapy,2014,58(1):606-609.
[10]Lang A S,Zhaxybayeva O,Beatty J T. Gene transfer agents:phage-like elements of genetic exchange[J]. Nature Reviews Microbiology,2012,10(7):472-482.
[11]Muniesa M,Imamovic L,Jofre J. Bacteriophages and genetic mobilization in sewage and faecally polluted environments[J]. Microbial Biotechnology,2011,4(6):725-734.
[12]Parsley L C,Consuegra E J,Kakirde K S,et al. Identification of diverse antimicrobial resistance determinants carried on bacterial,plasmid,or viral metagenomes from an activated sludge microbial assemblage[J]. Applied and Environmental Microbiology,2010,76(11):3753-3757.
[13]Breitbart M,Thompson L R,Suttle C A,et al. Exploring the vast diversity of Marine viruses[J]. Oceanography,2007,20(2):135-139.
[14]Fuhrman J A. Marine viruses and their biogeochemical and ecological effects[J]. Nature,1999,399(6736):541-548.
[15]Letarov A,Kulikov E. The bacteriophages in human-and animal body-associated microbial communities[J]. Journal of Applied Microbiology,2009,107(1):1-13.
[16]Liu B,Zhou F F,Wu S J,et al. Genomic and proteomic characterization of a thermophilic Geobacillus bacteriophage GBSV1[J]. Research in Microbiology,2009,160(2):166-171.
[17]Rodriguez-Valera F,Martin-Cuadrado A-,Pasic L,et al. OPINION explaining microbial population genomics through phage predation[J]. Nature Reviews Microbiology,2009,7(11):828-836.
[18]Hao X D,Wang Q L,Cao Y L,et al. Evaluating sludge minimization caused by predation and viral infection based on the extended activated sludge model No. 2d[J]. Water Research,2011,45(16):5130-5140.
[19]Khan M A,Satoh H,Katayama H,et al. Bacteriophages isolated from activated sludge processes and their polyvalency[J]. Water Research,2002,36(13):3364-3370.
[20]Brussow H,Canchaya C,Hardt W D. Phages and the evolution of bacterial pathogens:from genomic rearrangements to lysogenic conversion[J]. Microbiology and Molecular Biology Reviews,2004,68(3):560-602.
[21]Colomer-Lluch M,Calero-Cáceres W,Jebri S,et al. Antibiotic resistance genes in bacterial and bacteriophage fractions of Tunisian and Spanish wastewaters as markers to compare the antibiotic resistance patterns in each population[J]. Environment International,2014,73:167-175.
[22]Colomer-Lluch M,Jofre J,Muniesa M. Quinolone resistance genes (qnrA and qnrS) in bacteriophage particles from wastewater samples and the effect of inducing agents on packaged antibiotic resistance genes[J]. Journal of Antimicrobial Chemotherapy,2014,69(5):1265-1274.
[23]Marti E,Variatza E,Balcazar J L. Bacteriophages as a reservoir of extended-spectrum β-lactamase and fluoroquinolone resistance genes in the environment[J]. Clinical Microbiology and Infection,2014,20(7):O456-O459.
[24]Colomer-Lluch M,Imamovic L,Jofre J,et al. Bacteriophages carrying antibiotic resistance genes in fecal waste from cattle,pigs,and poultry[J]. Antimicrobial Agents and Chemotherapy,2011,55(10):4908-4911.
[25]Calero-Cáceres W,Muniesa M. Persistence of naturally occurring antibiotic resistance genes in the bacteria and bacteriophage fractions of wastewater[J]. Water Research,2016,95:11-18.
[26]Calero-Caceres W,Melgarejo A,Colomer-Lluch M A,et al. Sludge as a potential important source of antibiotic resistance genes in both the bacterial and bacteriophage fractions[J]. Environmental Science and Technology,2014,48(13):7602-7611.
[27]Ross J,Topp E. Abundance of antibiotic resistance genes in bacteriophage following soil fertilization with dairy manure or municipal biosolids,and evidence for potential transduction[J]. Applied and Environmental Microbiology,2015,81(22):7905-7913.
[28]Minot S,Sinha R,Chen J,et al.The human gut virome:inter-individual variation and dynamic response to diet[J]. Genome Research,2011,21(10):1616-1625.
[29]Liu B,Pop M. ARDB—Antibiotic resistance genes database[J]. Nucleic Acids Research,2009,37(S1):D443-D447.
[30]Modi S R,Lee H H,Spina C S,et al. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome[J]. Nature,2013,499(7457):219.
[31]Enault F,Briet A,Bouteille L,et al. Phages rarely encode antibiotic resistance genes:a cautionary tale for virome analyses[J]. ISME Journal,2017,11(1):237-247.
[32]Fard R,Barton M D,Heuzenroeder M W. Bacteriophage-mediated transduction of antibiotic resistance in enterococci[J]. Letters in Applied Microbiology,2011,52(6):559-564.
[33]Haase A T,Retzel E F,Staskus K A . Amplification and detection of lentiviral DNA inside cells[J]. Proceedings of the National Academy of Sciences,1990,87(13):4971-4975.
[34]Kenzaka T,Tani K,Sakotani A,et al. High-frequency phage-mediated gene transfer among Escherichia coli cells,determined at the single-cell level[J]. Applied and Environmental Microbiology,2007,73(10):3291-3299.
[35]Kenzaka T,Tani K,Nasu M. High-frequency phage-mediated gene transfer in freshwater environments determined at single-cell level[J]. The ISME Journal,2010,4(5):648-659.
[36]McDaniel L D,Young E,Delaney J,et al. High frequency of horizontal gene transfer in the oceans[J]. Science,2010,330(6000):50.
[37]Beumer A,Robinson J B. A broad-host-range,generalized transducing phage (SN-T) acquires 16S rRNA genes from different genera of bacteria[J]. Applied and Environmental Microbiology,2005,71(12):8301-8304.
[38]Schmieger H,Schicklmaier P. Transduction of multiple drug resistance of Salmonella enterica serovar typhimurium DT104[J]. FEMS Microbiology Letters,1999,170(1):251-256.
[39]Taniashin V I,Zimin A A,Shliapnikov M G,et al.Transduction of plasmid antibiotic resistance determinants with pseudo-T-even bacteriophages[J]. Genetika,2003,39(7):914-926.
[40]Kenzaka T,Tani K,Sakotani A,et al. High-frequency phage-mediated gene transfer among Escherichia coli cells,determined at the single-cell level[J]. Applied and Environmental Microbiology,2007,73(10):3291-3299.
[41]Zhang Y F,Lejeune J T. Transduction of blaCMY-2tet(A),and tet(B) from Salmonella enterica subspecies enterica serovar Heidelberg to S. typhimurium[J]. Veterinary Microbiology,2008,129(3/4):418-425.
[42]Battaglioli E J,Baisa G A,Weeks A E,et al. Isolation of generalized transducing bacteriophages for uropathogenic strains of Escherichia coli[J]. Applied and Environmental Microbiology,2011,77(18):6630-6635.
[43]Marinus M G,Poteete A R. High efficiency generalized transduction in Escherichia coli O157:H7[J]. F1000 Research,2013,2(7):1-7.
[44]Bearson B L,Allen H K,Brunelle B W,et al. The agricultural antibiotic carbadox induces phage-mediated gene transfer in Salmonella[J]. Frontiers in Microbiology,2014,5(52):1-8.
[45]Bearson B L,Brunelle B W. Fluoroquinolone induction of phage-mediated gene transfer in multidrug-resistant Salmonella[J]. International Journal of Antimicrobial Agents,2015,46(2):201-204.
[46]Duran A E,Muniesa M,Mendez X,et al. Removal and inactivation of indicator bacteriophages in fresh waters[J]. Journal of Applied Microbiology,2002,92(2):338-347.
[47]Breitbart M,Salamon P,Andresen B,et al. Genomic analysis of uncultured marine viral communities[J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99(22):14250-14255.
[48]Rohwer F. Global phage diversity[J]. Cell,2003,113(2):141.

相似文献/References:

[1]唐惠玲,尹鸿萍.食品中抗生素耐药基因研究进展[J].江苏农业科学,2016,44(10):34.
 Tang Huiling,et al.Research progress on antibiotic resistance genes in food[J].Jiangsu Agricultural Sciences,2016,44(07):34.

备注/Memo

备注/Memo:
收稿日期:2017-11-23
基金项目:国家自然科学基金(编号:21477035)。
作者简介:曾祥朋(1990—),男,河南濮阳人,硕士研究生,主要从事环境微生物研究。E-mail:yougujimo@163.com。
通信作者:杨清香,博士,教授,主要从事资源与环境微生物学研究。E-mail:yangqx@hut.edu.cn。
更新日期/Last Update: 2019-04-05