|本期目录/Table of Contents|

[1]薛金嫚,刘华,陈亚东,等.利用LEAFY COTYLEDON 2转录因子提升植物营养器官内油脂含量的研究综述[J].江苏农业科学,2019,47(07):11-14.
 Xue Jinman,et al.Improving oil content in plant vegetative tissues using transcriptional factor LEAFY COTYLEDON 2:a review[J].Jiangsu Agricultural Sciences,2019,47(07):11-14.
点击复制

利用LEAFY COTYLEDON 2转录因子提升植物
营养器官内油脂含量的研究综述
(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第07期
页码:
11-14
栏目:
专论与综述
出版日期:
2019-05-10

文章信息/Info

Title:
Improving oil content in plant vegetative tissues using transcriptional factor LEAFY COTYLEDON 2:a review
作者:
薛金嫚1 刘华2 陈亚东1 徐婷1 甘毅1
1.浙江农林大学农业与食品科学学院,浙江杭州 311300; 2.浙江农林大学林业与生物技术学院,浙江杭州 311300
Author(s):
Xue Jinmanet al
关键词:
LEC2植物营养器官油脂合成
Keywords:
-
分类号:
S188
DOI:
-
文献标志码:
A
摘要:
近年来,由于传统油料作物种植耕地受限,在植物营养器官内合成和储存油脂已成为新的全球研究热点。研究表明,在植物营养器官中通过基因工程手段调控参与种子中油脂合成的相关基因,会有效提升其甘油三脂含量和脂肪酸组成。LEAFY COTYLEDON 2(LEC2)是具有B3结构域的DNA结合蛋白家族的成员,参与调控胚胎发生、种子储藏蛋白合成、脂肪酸代谢等重要生物学过程。近年来,许多研究都选择该转录因子作为改造植物营养组织产油的关键因子,笔者对上述研究作了简要的综述,并探讨了目前仍存在的问题和可能的解决对策。本文可为今后利用基因工程手段调控植物营养器官内的油脂含量提供了一定的参考。
Abstract:
-

参考文献/References:

[1]Carlsson A S,Yilmaz J L,Green A G,et al. Replacing fossil oil with fresh oil - with what and for what?[J]. European Journal of Lipid Science and Technology,2011,113(7):812-831.
[2]Thelen J J,Ohlrogge J B. Metabolic engineering of fatty acid biosynthesis in plants[J]. Metabolic Engineering,2002,4(1):12-21.
[3]Reynolds K B,Taylor M C,Zhou X,et al. Metabolic engineering of medium-chain fatty acid biosynthesis in Nicotiana benthamiana plant leaf lipids[J]. Frontiers in Plant Science,2015,6:164.
[4]Ohlrogge J B. Design of new plant products:engineering of fatty acid metabolism[J]. Plant Physiology,1994,104(3):821-826.
[5]Hu Q,Sommerfeld M,Jarvis E,et al. Microalgal triacylglycerols as feedstocks for biofuel production:perspectives and advances[J]. The Plant Journal,2008,54:621-639.
[6]Radakovits R,Jinkerson R E,Darzins A A. Genetic engineering of algae for enhanced biofuel production[J]. Eukaryotic Cell,2010,9(4):486-501.
[7]Wu H Y,Liu C,Li M C,et al. Effects of monogalactoglycerolipid deficiency and diacylglycerol acyltransferase overexpression on oil accumulation in transgenic tobacco[J]. Plant Molecular Biology Reporter,2013,31(5):1077-1088.
[8]Bouvier-Navé P,Benveniste P,Oelkers P,et al. Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase[J]. European Journal of Biochemistry,2000,267(1):85-96.
[9]Park S,Gidda S K,James C N,et al. The α/β hydrolase CGI-58 and peroxisomal transport protein PXA1 coregulate lipid homeostasis and signaling in Arabidopsis[J]. Plant Cell,2013,25(5):1726-1739.
[10]James C N,Horn P J,Case C R,et al. Disruption of the Arabidopsis CGI-58 homologue produces chanarin-dorfman-like lipid droplet accumulation in plants[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(41):17833-17838.
[11]Vanhercke T,El Tahchy A,Shrestha P,et al. Synergistic effect of WRI1 and DGAT1 coexpression on triacylglycerol biosynthesis in plants[J]. FEBS Letters,2013,587(4):364-369.
[12]Kelly A A,van Erp H,Quettier A L,et al. The SUGAR-DEPENDENT1 lipase limits triacylglycerol accumulation in vegetative tissues of Arabidopsis[J]. Plant Physiology,2013,162(3):1282-1289.
[13]Angeles-Núez J G,Tiessen A. Mutation of the transcription factor LEAFY COTYLEDON 2 alters the chemical composition of Arabidopsis seeds,decreasing oil and protein content,while maintaining high levels of starch and sucrose in mature seeds[J]. Journal of Plant Physiology,2011,168(16):1891-1900.
[14]Cernac A,Andre C,Hoffmann-Benning S,et al. WRI1 is required for seed germination and seedling establishment[J]. Plant Physiology,2006,141(2):745-757.
[15]Liu J,Hua W,Zhan G,et al. Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus[J]. Plant Physiology and Biochemistry,2010,48(1):9-15.
[16]Baud S,Mendoza M S,To A,et al. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis[J]. The Plant Journal for Cell and Molecular Biology,2007,50(5):825-838.
[17]Bourgis F,Kilaru A,Cao X,et al. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(30):12527-12532.
[18]Ohlrogge J B,Jaworski J G. Regulation of fatty acid synthesis[J]. Annual Review of Plant Biology,1997,48:109-136.
[19]Millar A A,Smith M A,Kunst L. All fatty acids are not equal:discrimination in plant membrane lipids[J]. Trends in Plant Science,2000,5(3):95-101.
[20]Baud S,Lepiniec L. Regulation of de novo fatty acid synthesis in maturing oilseeds of Arabidopsis[J]. Plant Physiology & Biochemistry,2009,47(6):448-455.
[21]Mendoza M S,Dubreucq B,Miquel M,et al. LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves[J]. FEBS Letters,2005,579(21):4666-4670.
[22]Slocombe S P,Cornah J,Pinfield-Wells H,et al. Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways[J]. Plant Biotechnology Journal,2009,7(7):694-703.
[23]Kim H U,Jung S J,Lee K R,et al. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues[J]. FEBS Open bio,2014,4(1):25-32.
[24]Andrianov V,Borisjuk N,Pogrebnyak N A,et al. Tobacco as a production platform for biofuel:overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass[J]. Plant Biotechnology Journal,2010,8(3):277-287.
[25]Nookaraju A,Pandey S K,Fujino T,et al. Enhanced accumulation of fatty acids and triacylglycerols in transgenic tobacco stems for enhanced bioenergy production[J]. Plant Cell Reports,2014,33(7):1041-1052.
[26]Kim H U,Lee K R,Jung S J,et al. Senescence-inducible LEC2 enhances triacylglycerol accumulation in leaves without negatively affecting plant growth[J]. Plant Biotechnology Journal,2015,13(9):1346-1359.
[27]刘长斌,佟少明,张文蕾,等. 拟南芥Leafy Cotyledon 2的表达提高了小球藻Chlorella sorokiniana的油脂含量[J]. 生物工程学报,2017,33(6):1037-1045.
[28]Ramli U S,Baker D S,Quant P A,et al. Control analysis of lipid biosynthesis in tissue cultures from oil crops shows that flux control is shared between fatty acid synthesis and lipid assembly[J]. Biochemical Journal,2002,364(2):393-401.
[29]Greenwell H C,Laurens L M,Shields R J,et al. Placing microalgae on the biofuels priority list:a review of the technological challenges[J]. Journal of the Royal Society Interface,2010,7(46):703-726.
[30]苗迎春,雷洁,牛蕾蕾,等. 提高植物营养器官含油量的研究进展[J]. 江苏农业科学,2017,45(1):1-5.
[31]Kondo H,Shiratsuchi K,Yoshimoto T,et al. Acetyl-CoA carboxylase from Escherichia coli:gene organization and nucleotide sequence of the biotin carboxylase subunit[J]. Proceedings of the National Academy of Sciences of the United States of America,1991,88:9730-9733.
[32]Li S J,Cronan J E Jr. The gene encoding the biotin carboxylase subunit of Escherichia coli acetyl-CoA carboxylase[J]. Journal of Biological Chemistry,1992,267(2):855-863.

相似文献/References:

[1]余莉琳,裴宗平,常晓华,等.干旱胁迫及复水对4种矿区生态修复草本植物生理特性的影响[J].江苏农业科学,2013,41(07):362.
 Yu Lilin,et al.Effects of drought stress and rewatering on physiological characteristics of several herbaceous plants with ecological restoration function[J].Jiangsu Agricultural Sciences,2013,41(07):362.
[2]李红,唐永金,曾峰.高浓度锶、铯胁迫对植物叶绿素荧光特性的影响[J].江苏农业科学,2013,41(09):349.
 Li Hong,et al.Effects of high concentrations of strontium and cesium on chlorophyll fluorescence characteristics of plants[J].Jiangsu Agricultural Sciences,2013,41(07):349.
[3]巩子路,田童童,朱新荣,等.植物铁蛋白钙复合物的制备[J].江苏农业科学,2013,41(11):292.
 Gong Zilu,et al.Preparation of plant ferritin-calcium complexes[J].Jiangsu Agricultural Sciences,2013,41(07):292.
[4]赵妍,王旭和,韩春刚,等.8种观赏植物净化污水中总氮、总磷效果及景观配置[J].江苏农业科学,2013,41(12):348.
 Zhao Yan,et al.Purification effect of eight kinds of ornamental plants on total nitrogen and total phosphorus in domestic sewage and their landscape design[J].Jiangsu Agricultural Sciences,2013,41(07):348.
[5]郭义红,孙威江,林伟东,等.植物DNA条形码鉴定研究进展[J].江苏农业科学,2016,44(07):19.
 Guo Yihong,et al.Research progress of plant Identification by DNA barcoding[J].Jiangsu Agricultural Sciences,2016,44(07):19.
[6]陈露,杨立明,罗玉明.植物ICE蛋白基因家族的系统进化分析[J].江苏农业科学,2016,44(02):42.
 Chen Lu,et al.Phylogenetic analysis of ICE protein gene family in plants[J].Jiangsu Agricultural Sciences,2016,44(07):42.
[7]韩俊杰,王昊龙,李卫华.关联分析及其在不同分子标记中的应用综述[J].江苏农业科学,2016,44(02):13.
 Han Junjie,et al.Correlation analysis and its application in different molecular markers[J].Jiangsu Agricultural Sciences,2016,44(07):13.
[8]白晓龙,杨春和,顾卫兵,等.不同植物人工湿地净化模拟生活污水效果[J].江苏农业科学,2014,42(04):326.
 Bai Xiaolong,et al.Purifying effects of artificial wetlands with different vegetation systems on synthetic domestic sewage[J].Jiangsu Agricultural Sciences,2014,42(07):326.
[9]李海波,王鹏飞,李英华.用于城市径流净化的岸堤漫流技术的植物与基质的组配方式[J].江苏农业科学,2015,43(07):357.
 Li Haibo,et al.Equipping way of plants and substrates of embankment flowing technology used for urban runoff purification[J].Jiangsu Agricultural Sciences,2015,43(07):357.
[10]闻婧,孟力力,张俊,等.弱光对植物光合特性影响的研究进展[J].江苏农业科学,2014,42(07):22.
 Wen Jing,et al.Research progress on photosynthetic characteristics of plant under weak light[J].Jiangsu Agricultural Sciences,2014,42(07):22.

备注/Memo

备注/Memo:
收稿日期:2017-12-27
基金项目:国家自然科学基金青年科学基金(编号:31600526);浙江省自然科学基金青年项目(编号:LQ15C020002);浙江农林大学科学发展基金(编号:2014FR007)。
作者简介:薛金嫚(1990—),女,浙江杭州人,硕士研究生,主要从事油脂代谢分子生物学和生物化学研究。E-mail:1310024980@qq.com。
通信作者:甘毅,博士,讲师,主要从事油脂代谢的分子生物学和生物化学研究。E-mail:zjuganyi@163.com。
更新日期/Last Update: 2019-04-05