|本期目录/Table of Contents|

[1]石秀丽,赵伟烨,黄学茹,等.水合氧化铁与黄腐酸对土壤硝化作用的影响[J].江苏农业科学,2019,47(10):312-316.
 Shi Xiuli,et al.Effects of ferric oxide hydrate and fulvic acid on soil nitrification[J].Jiangsu Agricultural Sciences,2019,47(10):312-316.
点击复制

水合氧化铁与黄腐酸对土壤硝化作用的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第10期
页码:
312-316
栏目:
资源与环境
出版日期:
2019-06-12

文章信息/Info

Title:
Effects of ferric oxide hydrate and fulvic acid on soil nitrification
作者:
石秀丽12 赵伟烨23 黄学茹23 秦华1 谢德体23 蒋先军23
1.西南大学园艺园林学院,重庆 400715; 2.西南大学土壤生物研究中心,重庆 400715;
3.西南大学资源环境学院,重庆 400715
Author(s):
Shi Xiuliet al
关键词:
水合氧化铁黄腐酸pH值水分硝化作用土壤
Keywords:
-
分类号:
S151.9+3
DOI:
-
文献标志码:
A
摘要:
采用室内28 ℃恒温培养法,研究添加水合氧化铁与黄腐酸对不同pH值及不同含水量土壤硝化作用的影响。结果表明,与不添加水合氧化铁、黄腐酸(CK)相比,仅加入水合氧化铁、同时加入水合氧化铁与黄腐酸可显著促进pH值为 5.1紫色潮土硝化作用的发生(P<0.05),而显著抑制pH值为7.8紫色潮土的硝化作用(P<0.05),仅添加水合氧化铁对pH 值为4.5的黄壤土硝化作用影响不显著(P>0.05),加入黄腐酸可以显著抑制pH值为 5.1、7.8的紫色潮土的硝化作用(P<0.05);土壤含水量分别为最大持水量(WHC)的50%、100%、200%条件下,与CK相比,加入水合氧化铁可以显著促进净硝化速率的增加,而仅加入黄腐酸多显著抑制硝化过程的发生(P<0.05); pH值为5.1的紫色潮土在添加底物硫酸铵、含水量为100% WHC条件下,加入黄腐酸可以显著刺激N2O的排放,而加入水合氧化铁则显著抑制N2O的排放(P<0.05)。
Abstract:
-

参考文献/References:

[1]贺纪正,张丽梅. 土壤氮素转化的关键微生物过程及机制[J]. 微生物学通报,2013,40(1):98-108.
[2]Zhang L M,Hu H W,Shen J P,et al. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils[J]. The ISME Journal,2012,6(5):1032-1045.
[3]Shen J,Zhang L,Zhu Y,et al. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam[J]. Environmental Microbiology,2008,10(6):1601-1611.
[4]Bustamante M,Verdejo V,Zúiga C,et al. Comparison of water availability effect on ammonia-oxidizing bacteria and archaea in microcosms of a Chilean semiarid soil[J]. Frontiers in Microbiology,2012,3:282.
[5]Tourna M,Freitag T E,Nicol G W,et al. Growth,activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms[J]. Environmental Microbiology,2008,10(5):1357-1364.
[6]Malhi S S,Mcgill W B. Nitrification in three Alberta soils:effect of temperature,moisture and substrate concentration[J]. Soil Biology and Biochemistry,1982,14(4):393-399.
[7]Sahrawat K L. Ammonium production in submerged soils and sediments:the role of reducible iron[J]. Communications in Soil Science and Plant Analysis,2004,35(3/4):399-411.
[8]Schwertmann U. Solubility and dissolution of iron oxides[M]. Berlin:Springer Netherlands,1991:3-27.
[9]Lovley D R. Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) reduction[J]. Microbiological Reviews,1991,55(2):259-287.
[10]Li L M,Pan Y H,Wu Q T,et al. Investigation on amorphous ferric oxide acting as an electron acceptor in the oxidation of NH+4under anaerobic condition[J]. Acta Pedologica Sinica,1988,25(2):184-190.
[11]Sawayama S. Possibility of anoxic ferric ammonium oxidation[J]. Journal of Bioscience and Bioengineering,2006,101(1):70-72.
[12]Dubinsky E A,Silver W L,Firestone M K. Tropical forest soil microbial communities couple iron and carbon biogeochemistry[J]. Ecology,2010,91(9):2604-2612.
[13]Weber K A,Achenbach L A,Coates J D. Microorganisms pumping iron:anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology,2006,4(10):752-764.
[14]Senn D B,Hemond H F. Nitrate controls on iron and arsenic in an urban lake[J]. Science,2002,296(5577):2373-2376.
[15]Hall S J,Silver W L. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils[J]. Global Change Biology,2013,19(9):2804-2813.
[16]贺纪正,沈菊培,张丽梅. 土壤硝化作用的新机理——氨氧化古菌在酸性土壤氨氧化中的主导作用[J]. 科学观察,2013,7(6):58-60.
[17]朱兆良. 农田中氮肥的损失与对策[J]. 土壤与环境,2000,9(1):1-6.
[18]Deboer W,Tietema A,Gunnewiek P J,et al. The chemolithotrophic ammonium-oxidizing community in a nitrogen-saturated acid forest soil in relation to pH-dependent nitrifying activity[J]. Soil Biology and Biochemistry,1992,24(3):229-234.
[19]Robertson G P. Factors regulating nitrification in primary and secondary succession[J]. Ecology,1982,63:1561-1573.
[20]Tietema A,de Boer W,Riemer L,et al. Nitrate production in nitrogen-saturated acid forest soils:vertical distribution and characteristics[J]. Soil Biology & Biochemistry,1992,24:235-240.
[21]Dancer W S,Peterson L A,Chesters G. Ammonification and nitrification of N as influenced by soil pH and previous N treatment[J]. Soil Science Society of America Proceedings,1973,37:67-69.
[22]Persson T,Wireén A. Nitrogen mineralization and potential nitrification at different depths in acid forest soils[J]. Plant and Soil,1995,168/169:55-65.
[23]Ste-Marie C,Pare D.Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands[J]. Soil Biology & Biochemistry,1999,31(11):1579-1589.
[24]Lovley D R,Phillips E P. Organic matter mineralization with reduction of ferric iron in anaerobic sediments[J]. Applied and Environmental Microbiology,1986,51(4):683-689.
[25]刘若萱,张丽梅,白刃,等. 模拟条件下土壤硝化作用及硝化微生物对不同水分梯度的响应[J]. 土壤学报,2015,52(2):415-422.
[26]Lovley D R,Fraga J L,Blunt-Harris E L,et al. Humic substances as a mediator for microbially catalyzed metal reduction[J]. Acta Hydrochimica et Hydrobiologica,1998,26(3):152-157.
[27]Peretyazhko T,Sposito G. Reducing capacity of terrestrial humic acids[J]. Geoderma,2006,137(1):140-146.
[28]Weber K A,Achenbach L A,Coates J D. Microorganisms pumping iron:anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology,2006,4(10):752-764.
[29]Amstaetter K,Borch T,Kappler A. Influence of humic acid imposed changes of ferrihydrite aggregation on microbial Fe(Ⅲ) reduction[J]. Geochimica et Cosmochimica Acta,2012,85:326-341.
[30]Kemmitt S J,Wright D,Goulding K W,et al. pH regulation of Carbon and Nitrogen dynamics in two agricultural soils[J]. Soil Biology and Biochemistry,2006,38(5):898-911.
[31]Booth M S,Stark J M,Rastetter E. Controls on nitrogen cycling in terrestrial ecosystems:a synthetic analysis of literature data[J]. Ecological Monographs,2005,75(2):139-157.
[32]Huang X,Zhu-Barker X,Horwath W R,et al. Effect of iron oxide on nitrification in two agricultural soils with different pH[J]. Biogeosciences,2016,13(19):5609-5617.
[33]Vajrala N,Martens-Habbena W,Sayavedra-Soto L A,et al. Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine archaea[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(3):1006-1011.
[34]Meiklejohn J. Iron and the nitrifying bacteria[J]. Microbiology,1952,8(1):58-65.
[35]Jansson S L,Hallam M J,Bartholomew W V. Preferential utilization of ammonium over nitrate by micro-organisms in the decomposition of oat straw[J]. Plant and Soil,1955,6(4):382-390.
[36]Zhang J B,Cai Z C,Zhu T B,et al. Mechanisms for the retention of inorganic N in acidic forest soils of southern China[J]. Scientific Reports,2013,3:2342.
[37]Stark J M,Hart S C. High rates of nitrification and nitrate turnover in undisturbed coniferous forests[J]. Nature,1997,385(6611):61-64.
[38]Davidson E A,Chorover J,Dail D B. A mechanism of abiotic immobilization of nitrate in forest ecosystems:the ferrous wheel hypothesis[J]. Global Change Biology,2003,9(2):228-236.
[39]Konneke M,Bernhard A E,de la Torre J R,et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature,2005,437(758):543-546.
[40]Bates S T,Berg-Lyons D,Caporaso J,et al. Examining the global distribution of dominant archaeal populations in soil[J]. The ISME Journal,2011,5(5):908-917.
[41]Ke X B,Lu Y H. Adaptation of ammonia-oxidizing microorganisms to environment shift of paddy field soil[J]. FEMS Microbiology Ecology,2012,80(1):87-97.
[42]Roden E E,Urrutia M M. Influence of biogenic Fe(Ⅱ)on bacterial crystalline Fe(Ⅲ)oxide reduction[J]. Geomicrobiology Journal,2002,19(2):209-251.
[43]Weiss J V,Emerson D,Megonigal J P. Geochemical control of microbial Fe(Ⅲ) reduction potential in wetlands:comparison of the rhizosphere to non-rhizosphere soil[J]. FEMS Microbiology Ecology,2004,48(1):89-100.
[44]Zhu X,Silva L R,Doane T A,et al. Iron:the forgotten driver of nitrous oxide production in agricultural soil[J]. PLoS One,2013,8(3):e60146.
[45]Dandie C E,Burton D L,Zebarth B J,et al. Changes in bacterial denitrifier community abundance over time in an agricultural field and their relationship with denitrification activity[J]. Applied and Environmental Microbiology,2008,74(19):5997-6005.
[46]Sanchez P A. Properties and management of soils in the tropics[J]. Soil Science,1977,124(3):187.
[47]Roden E E,Sobolev D,Glazer B,et al. Potential for microscale bacterial Fe redox cycling at the aerobic-anaerobic interface[J]. Geomicrobiology Journal,2004,21(6):379-391.

相似文献/References:

[1]沈浜凯,肖龙云,冯乃杰,等.黄腐酸和AM真菌对玉米幼苗抗旱性的影响[J].江苏农业科学,2013,41(05):64.
 Shen Bangkai,et al.Effects of fulvic acid and AM fungi on drought resistance of maize seedlings[J].Jiangsu Agricultural Sciences,2013,41(10):64.
[2]唐登明,于永军.黄腐酸对仙客来生长及花蕾形成的影响[J].江苏农业科学,2014,42(12):233.
 Tang Dengming,et al.Effects of fulvic acid on growth and flower bud formation of cyclamen[J].Jiangsu Agricultural Sciences,2014,42(10):233.
[3]丁丁,郭艳超,鲁梦莹,等.黄腐酸对NaCl胁迫下茶菊幼苗生理特性的影响[J].江苏农业科学,2019,47(24):114.
 Ding Ding,et al.Influence of fulvic acid on seedling physiological characteristics of Chrysanthemum under NaCl stress[J].Jiangsu Agricultural Sciences,2019,47(10):114.

备注/Memo

备注/Memo:
收稿日期:2018-01-03
基金项目:国家自然科学基金(编号:41671232、41271267)。
作者简介:石秀丽(1978—),女,江苏徐州人,硕士,讲师,从事园艺土壤学研究。E-mail:shixiuliswu@126.com。
通信作者:蒋先军,博士,教授,博士生导师,从事土壤肥力与生态研究。E-mail:jiangxj@swu.edu.cn。
更新日期/Last Update: 2019-05-20