[1]孙金秋,任相亮,胡红岩,等. 农田杂草群落演替的影响因素综述[J]. 杂草学报,2019,37(2):1-9.
[2]强胜. 中国杂草生物学研究的新进展[J]. 杂草学报,2018,36(2):1-9.
[3]李少昆,赵久然,董树亭,等. 中国玉米栽培研究进展与展望[J]. 中国农业科学,2017,50(11):1941-1959.
[4]张伟平,沈云峰,肖文祥,等. 玉米地除草剂防治宽叶酢浆草的田间药效评价[J]. 杂草学报,2018,36(3):41-45.
[5]梁帝允,梁桂梅. 我国农田化学除草现状与发展对策[C]//第七届全国杂草科学会议论文集. 杂草科学与环境及粮食安全——中国化学除草50年回顾与展望. 北京:中国植物保护学会杂草学分会,2004:30-38.
[6]祖琴,陈湘萍,邓巍. 光谱图像技术在精准施药中的应用[J]. 农机化研究,2013(3):19-23.
[7]Wang N,Zhang N,Sun Y. Development of spectral-based weed sensor [D]. St Joseph,Mich:ASAE,1999.
[8]Goel P K,Prasher S O,Patel R M,et al. Use of airborne multi-spectral imagery for weed detection in field crops[J]. Transactions of the ASAE,2002,45(2): 443-449.
[9]纪寿文,王荣本,陈佳娟,等. 应用计算机图像处理技术识别玉米苗期田间杂草的研究[J]. 农业工程学报,2001,17(2):154-156.
[10]龙满生,何东健,耿楠,等. 精确杂草控制技术的研究现状[J]. 农机化研究,2004(6):9-12,15.
[11]毛文华,张银桥,王辉,等. 杂草信息实时获取技术与设备研究进展[J]. 农业机械学报,2013,41(1):190-195.
[12]毛文华,王月青,王一鸣,等. 苗期作物和杂草的光谱分析与识别[J]. 光谱学与光谱分析,2005(6):984-987.
[13]潘家志. 基于光谱和多光谱数字图像的作物与杂草识别方法研究[D]. 杭州:浙江大学,2007.
[14]陈树人,沈宝国,毛罕平,等. 基于颜色特征的棉田中铁苋菜识别技术[J]. 农业机械学报,2009,40(5):149-152.
[15]白敬,徐友,魏新华,等. 基于光谱特性分析的冬油菜苗期田间杂草识别[J]. 农业工程学报,2013,29(20):128-134.
[16]Ashok Kumar D,Prema P. A review on crop and weed segmentation based on digital images[J]. Lecture Notes in Electrical Engineering,2013,213:279-291.
[17]罗守德,武殿林,郭国亮,等. 旱地玉米拔节至抽穗期田间管理[J]. 山西农业科学,1984(6):5-7.
[18]高雨茜. 夏玉米叶绿素、叶面积指数高光谱估测研究[D]. 杨凌:西北农林科技大学,2016.
[19]刘景辉,王志敏,李立军,等. 超高产是中国未来粮食安全的基本技术途径[J]. 农业现代化研究,2003,24(3):161-165.
[20]Wu Q S,Hu Y J,Ke H Y,et al. Study pollen grains in rice by using multispectral imaging techniques[J]. Proceedings of SPIE-The International Society for Optical Engineering,2005,5694:100-109.
[21]Sui R X,Thomasson J A,Hanks J,et al. Ground-based sensing system for weed mapping in cotton[J]. Computers and Electronics in Agriculture,2008,60(1): 31-38.
[22]齐龙,马旭,周海波. 基于虚拟仪器技术的田间多光谱视觉系统设计[J]. 农业机械学报,2009,40(1):157-161.
[23]唐晶磊,何东健,景旭,等. 基于SVM的可见/近红外光的玉米和杂草的多类识别[J]. 红外与毫米波学报,2011,30(2):97-103.
[1]周鹏,郭颂,牛晓太,等.南疆红枣病虫危害等级识别模型的研究与实现[J].江苏农业科学,2014,42(06):354.
Zhou Peng,et al.Research and implementation of pest damage level recognition model of red dates in southern Xinjiang[J].Jiangsu Agricultural Sciences,2014,42(8):354.
[2]李彧,余心杰,郭俊先.基于全卷积神经网络方法的玉米田间杂草识别[J].江苏农业科学,2022,50(6):93.
Li Yu,et al.Weed recognition in corn field based on fully convolutional neural network (FCN) method[J].Jiangsu Agricultural Sciences,2022,50(8):93.
[3]田婷,张青,徐雯.光谱技术在作物养分监测中的应用研究进展[J].江苏农业科学,2024,52(14):31.
Tian Ting,et al.Research progress on application of spectral technology in crop nutrient monitoring[J].Jiangsu Agricultural Sciences,2024,52(8):31.
[4]杨德龙,李婧.基于注意力与小平方核的ConvNeXt农业杂草识别方法[J].江苏农业科学,2024,52(14):207.
Yang Delong,et al.ConvNeXt agricultural weed recognition method based on attention and small square kernel[J].Jiangsu Agricultural Sciences,2024,52(8):207.
[5]高发瑞,古华宁,张巧玲,等.基于农业大数据和深度学习的稻田杂草识别[J].江苏农业科学,2024,52(18):215.
Gao Farui,et al.Identification of weeds in rice field based on agricultural big data and deep learning[J].Jiangsu Agricultural Sciences,2024,52(8):215.
[6]黄友锐,王小桥,韩涛,等.基于改进YOLO v8n的甜菜杂草检测算法研究[J].江苏农业科学,2024,52(24):196.
Huang Yourui,et al.A detection method for sugar beets and weeds based on improved YOLO v8n algorithm[J].Jiangsu Agricultural Sciences,2024,52(8):196.