[1]董照锋,李俊,赵宇. 商洛茶树病虫种类调查及主要病虫害发生分布[J]. 山西农业大学学报(自然科学版),2018,38(12):33-37.
[2]刘威,袁丁,郭桂义,等. 茶树炭疽病病原鉴定[J]. 南方农业学报,2017,48(3):448-453.
[3]Zhang Q C,Yang L T,Chen Z K,et al. A survey on deep learning for big data[J]. Information Fusion,2018,42:146-157.
[4]Rangarajan A K,Purushothaman R,Ramesh A . Tomato crop disease classification using pre-trained deep learning algorithm[J]. Procedia Computer Science,2018,133:1040-1047.
[5]Sun Y,Jiang Z,Zhang L,et al. SLIC_SVM based leaf diseases saliency map extraction of tea plant[J]. Computers & Electronics in Agriculture,2019,157:102-109.
[6]方晨晨,石繁槐. 基于改进深度残差网络的番茄病害图像识别[J]. 计算机应用,2020,40(增刊1):203-208.
[7]王秀清,陈琪,杨世凤. 基于自适应布谷鸟与反向传播协同搜索的病害识别系统[J]. 天津科技大学学报,2020,35(2):69-73.
[8]贾少鹏,高红菊,杭潇. 基于深度学习的农作物病虫害图像识别技术研究进展[J]. 农业机械学报,2019,50(增刊1):313-317.
[9]孙云云,江朝晖,董伟,等. 基于卷积神经网络和小样本的茶树病害图像识别[J]. 江苏农业学报,2019,35(1):48-55.
[10]任胜男,孙钰,张海燕,等. 基于one-shot学习的小样本植物病害识别[J]. 江苏农业学报,2019,35(5):1061-1067.
[11]苏婷婷,牟少敏,董萌萍,等. 深度迁移学习在花生叶部病害图像识别中的应用[J]. 山东农业大学学报(自然科学版),2019,50(5):865-869.
[12]许景辉,邵明烨,王一琛,等. 基于迁移学习的卷积神经网络玉米病害图像识别[J]. 农业机械学报,2020,51(2):230-236.
[13]王艳玲,张宏立,刘庆飞,等. 基于迁移学习的番茄叶片病害图像分类[J]. 中国农业大学学报,2019,24(6):124-130.
[14]Wang K,Zhuo L,Li J F,et al. Learning an enhancement convolutional neural networkfor multi-degraded images[J],Sensing and Imaging,2020,21(12):5187-5198.
[15]陈峰,谷俊涛,李玉磊,等. 基于机器视觉和卷积神经网络的东北寒地玉米害虫识别方法[J]. 江苏农业科学,2020,48(18):237-244.
[16]Li Y S,Hu J,Zhao X,et al. Hyperspectral image super-resolution using deep convolutional neural network[J]. Neurocomputing,2017,266(29):29-41.
[17]王元东. 基于ResNet模型的图像分类方法及应用研究[D]. 南昌:华东交通大学,2019.
[18]Vidya K,Keerthana P,Shyamala Guruvare. Hybrid transfer learning for classification of uterine cervix images for cervical cancer screening[J],Journal of Digital Imaging,2020,33(2):619-631.
[19]Zhong M,LeBien J,Campos-Cerqueira M,et al. Multispecies bioacoustic classification using transfer learning of deep convolutional neural networks with pseudo-labeling[J]. Applied Acoustics,2020,166:107375.
[20]Lu Z Y,Bai Y Z,Chen Y,et al. The classification of gliomas based on a pyramid dilated convolution resnet model[J]. Pattern Recognition Letters,2020,133:173-179.
[21]Fei Z G,Wu Z Y,Xiao Y Q,et al. A new short-arc fitting method with high precision using Adam optimization algorithm[J]. Optik,2020,212:164788.
[22]杨观赐,杨静,李少波,等. 基于Dopout与ADAM优化器的改进CNN算法[J]. 华中科技大学学报(自然科学版),2018,46(7):122-127.
[23]赵小强,宋昭漾. Adam优化的CNN超分辨率重建[J]. 计算机科学与探索,2019,13(5):858-865.
[24]魏友达. 基于深度学习的唇语识别技术研究[D]. 西安:中国科学院大学(中国科学院西安光学精密机械研究所),2019.
[1]张飞云.基于提升小波和学习向量量化神经网络的小麦病害图像识别[J].江苏农业科学,2013,41(05):103.
Zhang Feiyun.Wheat diseases image recognition based on lifting wavelet and learning vector quantization neural network[J].Jiangsu Agricultural Sciences,2013,41(6):103.
[2]周洪刚,康敏.基于机器视觉的成熟柑橘自动识别研究[J].江苏农业科学,2013,41(06):380.
Zhou Honggang,et al.Research on automatic recognizing of mature oranges based on machine vision[J].Jiangsu Agricultural Sciences,2013,41(6):380.
[3]刘丽娟,刘仲鹏.基于改进BP算法的玉米叶部病害图像识别研究[J].江苏农业科学,2013,41(11):139.
Liu Lijuan,et al.Image recognition of maize leaf diseases based on improved BP algorithm[J].Jiangsu Agricultural Sciences,2013,41(6):139.
[4]刘丽娟,刘仲鹏.北方旱育稀植水稻病害图像识别预处理研究[J].江苏农业科学,2014,42(01):92.
Liu Lijuan,et al.Study on image preprocessing of maize leaf diseases of dry-cultivated and sparse-planting rice in northern China[J].Jiangsu Agricultural Sciences,2014,42(6):92.
[5]何玲,陈长喜,许晓华.基于物联网的生猪屠宰监管系统关键技术研究[J].江苏农业科学,2017,45(06):201.
He Ling,et al.Study on key technology of pig slaughtering supervision system based on internet of things[J].Jiangsu Agricultural Sciences,2017,45(6):201.
[6]刁智华,魏玉泉,刁春迎,等.基于图像的小麦白粉病形状特征参数优化与提取[J].江苏农业科学,2017,45(21):229.
Diao Zhihua,et al.Image-based shape parameter optimization and extraction of wheat powdery mildew[J].Jiangsu Agricultural Sciences,2017,45(6):229.
[7]何彦虎,武传宇,童俊华,等.基于专家系统的穴盘苗品种识别算法设计与试验[J].江苏农业科学,2019,47(04):176.
He Yanhu,et al.Design and experiment of identification algorithm of plug seedling based on expert system[J].Jiangsu Agricultural Sciences,2019,47(6):176.
[8]陶震宇,孙素芬,罗长寿.基于Faster-RCNN的花生害虫图像识别研究[J].江苏农业科学,2019,47(12):247.
Tao Zhenyu,et al.Study on peanut pest image recognition based on Faster-RCNN[J].Jiangsu Agricultural Sciences,2019,47(6):247.
[9]康飞龙,李佳,刘涛,等.多类农作物病虫害的图像识别应用技术研究综述[J].江苏农业科学,2020,48(22):22.
Kang Feilong,et al.Application technology of image recognition for various crop diseases and insect pests: a review[J].Jiangsu Agricultural Sciences,2020,48(6):22.
[10]倪云峰,叶健,樊娇娇.基于图像识别的水果分拣系统[J].江苏农业科学,2021,49(10):170.
Ni Yunfeng,et al.Fruit sorting system based on image recognition[J].Jiangsu Agricultural Sciences,2021,49(6):170.