|本期目录/Table of Contents|

[1]倪云峰,叶健,樊娇娇.基于图像识别的水果分拣系统[J].江苏农业科学,2021,49(10):170-176.
 Ni Yunfeng,et al.Fruit sorting system based on image recognition[J].Jiangsu Agricultural Sciences,2021,49(10):170-176.
点击复制

基于图像识别的水果分拣系统(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第10期
页码:
170-176
栏目:
农业工程与信息技术
出版日期:
2021-05-20

文章信息/Info

Title:
Fruit sorting system based on image recognition
作者:
倪云峰 叶健 樊娇娇
西安科技大学,陕西西安 710054
Author(s):
Ni Yunfenget al
关键词:
图像识别特征选择实时统计水果分拣
Keywords:
-
分类号:
S126;TP391.41
DOI:
-
文献标志码:
A
摘要:
为了解决人工水果分拣的缺点,探讨了一种基于图像识别的水果分拣系统。通过硬件采集系统采集各类不同水果的图像数据,应用图像处理技术,设定水果分类的颜色、大小特征的阈值标准,根据阈值标准对水果进行腐烂检测,区分出腐烂和完好水果;再对完好水果进行种类识别,并在相同种类下进行水果的大小等级识别和颜色状态判定。结合水果的大小及颜色,将水果分拣为特等果、优等果、次等果、劣等果四大类,以判别水果的外部和内部品质,最终实现水果的分拣。在分拣过程中实时统计已分拣水果的数量,将已识别的水果图像进行实时删除操作,减少系统内存,设置同步模块,使图像处理与自动化设备达到同步。测试结果显示,该水果分拣系统效率高、成本低,对水果供应链中的水果分拣应用具有较大意义。
Abstract:
-

参考文献/References:

[1]Kawamura S,Natsuga M,Takekura K,et al. Development of automatic rice-quality inspection system[J]. Computers and Electronics in Agriculture,2003,40(1/2/3):115-126.
[2]赵茂程,侯文军. 我国基于机器视觉的水果自动分级技术及研究进展[J]. 包装与食品机械,2007,25(5):5-8.
[3]Zhao M C,Hou W J. Researches of machine vision on fruit automatic grading technology and its prospect in China[J]. Packaging and Food Machinery,2007,25(5):5-8.
[4]Yud-Ren C,Chao K L,Moon S K. Machine vision technology for agricultural applications[J]. Computers and Electronics in Agriculture,2002,36(2/3):173-191.
[5]费琦琪,施杰,夏敏,等. 基于CNN的冰糖橙分级系统[J]. 江苏农业学报,2020,36(2):513-519.
[6]Tao Y,Heinemann P H,Varqhese Z. Machine vision color inspection of potatoes and apples[J]. Transactions of the ASAE,1995,38(5):1555-1561.
[7]Blanc P. Unit for sorting and packaging products capable of being hung on a hooking member for the purpose of their conveyance,such as bunches of fruits,in particular table grapes or truss tomatoes:US,US6957940[P]. 2005.
[8]Baigvand M,Banakar A,Minaei S,et al. Machine vision system for grading of driedfigs[J]. Computers & Electro nics in Agriculture,2015,119(C):158-165.
[9]叶晋涛,王运祥,杨杰,等. 马本学.哈密瓜颜色特征提取及成熟度分级的研究[J]. 石河子大学学报(自然科学版),2016,34(1):106-111.
[10]魏康丽,王振杰,孙柯,等. 基于计算机视觉对苹果脆片外观品质分级[J]. 南京农业大学学报,2017,40(3):547-555.
[11]应义斌,饶秀勤,马俊福. 柑橘成熟度机器视觉无损检测方法研究[J]. 农业工程学报,2004,20(2):144-147.

相似文献/References:

[1]张飞云.基于提升小波和学习向量量化神经网络的小麦病害图像识别[J].江苏农业科学,2013,41(05):103.
 Zhang Feiyun.Wheat diseases image recognition based on lifting wavelet and learning vector quantization neural network[J].Jiangsu Agricultural Sciences,2013,41(10):103.
[2]周洪刚,康敏.基于机器视觉的成熟柑橘自动识别研究[J].江苏农业科学,2013,41(06):380.
 Zhou Honggang,et al.Research on automatic recognizing of mature oranges based on machine vision[J].Jiangsu Agricultural Sciences,2013,41(10):380.
[3]刘丽娟,刘仲鹏.基于改进BP算法的玉米叶部病害图像识别研究[J].江苏农业科学,2013,41(11):139.
 Liu Lijuan,et al.Image recognition of maize leaf diseases based on improved BP algorithm[J].Jiangsu Agricultural Sciences,2013,41(10):139.
[4]刘丽娟,刘仲鹏.北方旱育稀植水稻病害图像识别预处理研究[J].江苏农业科学,2014,42(01):92.
 Liu Lijuan,et al.Study on image preprocessing of maize leaf diseases of dry-cultivated and sparse-planting rice in northern China[J].Jiangsu Agricultural Sciences,2014,42(10):92.
[5]何玲,陈长喜,许晓华.基于物联网的生猪屠宰监管系统关键技术研究[J].江苏农业科学,2017,45(06):201.
 He Ling,et al.Study on key technology of pig slaughtering supervision system based on internet of things[J].Jiangsu Agricultural Sciences,2017,45(10):201.
[6]刁智华,魏玉泉,刁春迎,等.基于图像的小麦白粉病形状特征参数优化与提取[J].江苏农业科学,2017,45(21):229.
 Diao Zhihua,et al.Image-based shape parameter optimization and extraction of wheat powdery mildew[J].Jiangsu Agricultural Sciences,2017,45(10):229.
[7]高霞,邸玉琦,成艳君,等.面向预测的水产养殖物联网数据预处理方法[J].江苏农业科学,2018,46(11):187.
 Gao Xia,et al.Internet of things data preprocessing method for prediction in aquaculture[J].Jiangsu Agricultural Sciences,2018,46(10):187.
[8]何彦虎,武传宇,童俊华,等.基于专家系统的穴盘苗品种识别算法设计与试验[J].江苏农业科学,2019,47(04):176.
 He Yanhu,et al.Design and experiment of identification algorithm of plug seedling based on expert system[J].Jiangsu Agricultural Sciences,2019,47(10):176.
[9]陶震宇,孙素芬,罗长寿.基于Faster-RCNN的花生害虫图像识别研究[J].江苏农业科学,2019,47(12):247.
 Tao Zhenyu,et al.Study on peanut pest image recognition based on Faster-RCNN[J].Jiangsu Agricultural Sciences,2019,47(10):247.
[10]康飞龙,李佳,刘涛,等.多类农作物病虫害的图像识别应用技术研究综述[J].江苏农业科学,2020,48(22):22.
 Kang Feilong,et al.Application technology of image recognition for various crop diseases and insect pests: a review[J].Jiangsu Agricultural Sciences,2020,48(10):22.

备注/Memo

备注/Memo:
收稿日期:2020-09-30
项目基金:陕西省重点研发计划(编号:2018GY-151)。
作者简介:倪云峰(1968—),男,陕西西安人,博士,教授,主要从事自动化控制研究。E-mail:632129613@ qq.com。
通信作者:叶健,硕士研究生,主要从事图像处理及自动化研究。E-mail:1289893167@qq.com。
更新日期/Last Update: 2021-05-20