[1]Sackett W G. A bacterial stem blight of field and garden peas[M]. Colorado:the Experiment Station Fort Collins,1916:43-43.
[2]Bradbury J F. Guide to plant pathogenic bacteria[Z]. 1986:23-24.
[3]Grondeau C,Olivier V,SamsonR. Détection de Pseudomonas syringae pv.pisi dans les semences de pois:méthodes,limites et controverses[J]. Phytoma,1993,455:45-47.
[4]Stead D E,Pemberton A W. Recent problems with Pseudomonas syringae pv.pisi in the UK[J]. Bulletin OEPP/EPPO Bulletin,1987,17:291-294.
[5]刘慧. 中国食用豆贸易现状与前进展望[J]. 中国食物与营养,2012,18(8):45-49.
[6]陈青,钱俊婷,林振基,等. 进境加拿大豌豆中豌豆细菌性疫病菌的检测[J]. 植物病理学报,2016,46(2):169-175.
[7]赵廷昌. 植物病原细菌鉴定实验指导[M]. 3版.北京:中国农业科学技术出版社,2011:12-14.
[8]蔡妙英. 细菌名称[M]. 2版北京:科学出版社,1996:8-10.
[9]Gardan L,Shafik H,Belouin S,et al. DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959)[J]. International Journal of Systematic Bacteriology,1999,49(2):469-478.
[10]Taylor J D,Bevan J R,Crute I R,et al. Genetic relationship between races of Pseudomonas syringae pv. pisi and cultivars of Pisum sativum[J]. Plant Pathology,2010,38(3):364-375.
[11]Martín-Sanz A,Palomo J L,Pérez De La Vega M,et al. Identification of pathovars and races of Pseudomonas syringae,the main causal agent of bacterial disease in pea in North-Central Spain,and the search for disease resistance[J]. European Journal of Plant Pathology,2011,129(1):57-69.
[12]Grondeau C,Saunier M,Poutier F,et al. Evaluation of physiological and serological profiles of Pseudomonas syringae pv. pisi for pea blight identification[J]. Plant Pathology,2007,41(4):495-505.
[13]Arnold D L,Athey-Pollard A,Gibbon M J,et al. Specific oligonucleotide primers for the identification of Pseudomonas syringae pv. pisi yield one of two possible DNA fragments by PCR amplification:evidence of the phylogenetic divergence[J]. Physilogical and Molecular Plant Pathology,1996,49(4):233-245.
[14]Cournoyer B,Arnold D,Jackson R,et al. Phylogenetic evidence for a diversification of Pseudomonas syringae pv. pisi race 4 strains into two distinct lineages[J]. Phytopathology,1996,86(10):1051-1056.
[15]周俊玲,张蕙杰. 世界豌豆生产及贸易形势分析[J].世界农业,2015(9):131-135.
[16]杜甘露,张蕙杰,周俊玲. 加拿大食用豆生产、消费及贸易概况[J].世界农业,2012(10):95-98.
[17]Lelliott R A,Billing E,Hayward A C. A determinative scheme for the fluorescent plant pathogenic Pseudomonas[J]. Journal of Applied Bacteriology,2010,29(3):470-489.
[18]Schaad N W,Jones J B,Chun W. Laboratory guide for the identification of plant pathogenic bacteria[M]. Minnesota:APS Press St. Paul,1995:24-27.
[19]封立平,尼秀媚,厉艳,等. LAMP方法检测豌豆细菌性疫病菌[J]. 植物检疫,2013,27(3):80-84.
[20]Inoue Y,Takikawa Y. Phylogenic analysis of DNA sequences around the hrpL and hrpZ regions of Pseudomonas syringae group bacteria[M]//Pseudomonas syringae and Related Pathogens,1992:687-695.
[21]Inoue Y,Takikawa Y. Pseudomonas syringae strains are classified into five groups by comparing DMA homology at the hrp neighboring regions[J]. Journal of General Plant Pathology,2000,66(3):238-241.
[22]Inoue Y,Takikawa Y. Grouping Pseudomonas syringae strainsby comparing DNA homology at the hrp gene cluster and its neigh-boring regions[J]. Ann Phytopathol Soc Jpn,1999,65(1):32-41.
[23]Weingart H,Vlksch B,Ullrich M S. Comparison of ethylene production by Pseudomonas syringae and ralstonia solanacearum[J]. Phytopathology,1999,89(5):360-365.
[24]徐晓鸥,吴志毅,陈曦,等. 2 种豆类植物病原细菌的红外光谱检测与鉴定[J]. 浙江农业科学,2014(2):233-235.
[25]包奇,曹梦琪,周雨,等. 基于实时荧光定量PCR技术检测桑丁香假单胞菌[J]. 蚕业科学,2016,42(2):210-218.
[26]Dingle T C,Sedlak R H,Cook L,et al. Tolerance of droplet-digital PCR vs real-time quantitative PCR to inhibitory substances[J]. Clinical Chemistry,2013,59(11):1670-1672.
[27]田茜,李云飞,王明生,等. 水稻细菌性条斑病菌和白叶枯病菌数字PCR检测方法的建立[J]. 植物检疫,2018,32(6):25-31.
[28]李慧调,潘健章,方群. 数字PCR技术的发展及应用[J]. 化学进展,2020,32(5):581-593.
[1]杨梅,李洋,陈丽君,等.密度和磷肥对豌豆农艺性状和产量的影响[J].江苏农业科学,2013,41(06):83.
Yang Mei,et al.Effects of density and phosphatic fertilizer on agronomic traits and yield of pea[J].Jiangsu Agricultural Sciences,2013,41(13):83.
[2]刘宏,郑兴卫,李聪,等.豌豆染色体核型分析[J].江苏农业科学,2014,42(06):86.
Liu Hong,et al.Karyotype analysis of six pea varieties(lines)[J].Jiangsu Agricultural Sciences,2014,42(13):86.
[3]袁星星,陈新,崔晓艳,等.豌豆新品种苏豌8号及光温处理促进豌豆早熟技术[J].江苏农业科学,2016,44(07):198.
Yuan Xingxing,et al.Study on new Pisum sativum cultivar “Suwan No.8” and using photoperiod and thermoperiod treatment to promote pea paedogenesis technology[J].Jiangsu Agricultural Sciences,2016,44(13):198.
[4]李春龙.外源化感物质香豆酸对豌豆种子萌发、幼苗根际土壤酶活性及土壤微生物的影响[J].江苏农业科学,2018,46(04):94.
Li Chunlong.Effects of cumaric acids on pea seed germination,soil enzyme activity and soil microbe in rhizosphere of pea seedlings[J].Jiangsu Agricultural Sciences,2018,46(13):94.
[5]曹萌,南冠君,高玉琼,等.重金属对豌豆幼苗抗性生理指标的影响[J].江苏农业科学,2019,47(07):161.
Cao Meng,et al.Effects of heavy metal stress on resistance physiological indices of Pisum sativum L.[J].Jiangsu Agricultural Sciences,2019,47(13):161.
[6]周颖,薛晨晨,袁星星,等.豌豆的遗传多样性及其在农业景观中的应用[J].江苏农业科学,2020,48(13):112.
Zhou Ying,et al.Genetic diversity of Pisum sativum and its application in agricultural landscape[J].Jiangsu Agricultural Sciences,2020,48(13):112.