|本期目录/Table of Contents|

[1]侯慧云,高峰,高同国,等.施氮对大豆结瘤、固氮及产量影响的研究进展[J].江苏农业科学,2022,50(8):42-48.
 Hou Huiyun,et al.Research progress on effects of nitrogen application on soybean nodulation,nitrogen fixation and yield[J].Jiangsu Agricultural Sciences,2022,50(8):42-48.
点击复制

施氮对大豆结瘤、固氮及产量影响的研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第8期
页码:
42-48
栏目:
专论与综述
出版日期:
2022-04-20

文章信息/Info

Title:
Research progress on effects of nitrogen application on soybean nodulation,nitrogen fixation and yield
作者:
侯慧云 高峰 高同国 朱宝成
河北农业大学生命科学学院/农业废弃物资源化利用河北省工程研究中心,河北保定 071000
Author(s):
Hou Huiyunet al
关键词:
氮素大豆结瘤固氮效率
Keywords:
-
分类号:
S565.106
DOI:
-
文献标志码:
A
摘要:
氮是大豆[Glycine max (L.) Merrill]生长的必需元素,大豆生长所需氮量的50%~60%来自于共生固氮,少量施氮对大豆结瘤、固氮效率及产量有促进作用,施氮量过高则表现为抑制作用。本文着重从施氮的氮素形态、氮素施用量和施氮时期3个方面阐述了氮素对大豆根瘤数量、固氮酶活性和产量的影响。探讨了高氮抑制结瘤和固氮效率的作用机理即AON(autoregulation of nodulation)系统负反馈调节机理、激素调节作用、碳饥饿假说、硝酸盐毒性假说,并据此为大豆种植提供合理的施氮方案,为提高大豆固氮能力和产量提供科学依据。
Abstract:
-

参考文献/References:

[1]Kobayashi R,Yamaguchi S,Iwasa Y. Optimal control of root nodulation-prediction of life history theory of a mutualistic system[J]. Journal of Theoretical Biology,2021,510:110544.
[2]Salvagiotti F,Cassman K G,Specht J E,et al. Nitrogen uptake,fixation and response to fertilizer N in soybeans:a review[J]. Field Crops Research,2008,108(1):1-13.
[3]Ribeiro V H V,Maia L G S,Arneson N J,et al. Influence of PRE-emergence herbicides on soybean development,root nodulation and symbiotic nitrogen fixation[J]. Crop Protection,2021,144:105576.
[4]王鹤,吕艳秋,丁亦男,等. 低氮胁迫对不同品种野大豆幼苗生长特性的影响[J]. 长春师范大学学报,2019,38(10):99-103.
[5]Meharg A. Marschners mineral nutrition of higher plants[J]. Experimental Agriculture,2012,48(2):305.
[6]Gan Y B,Stulen I,van Keulen H,et al. Low concentrations of nitrate and ammonium stimulate nodulation and N2 fixation while inhibiting specific nodulation (nodule DW g-1 root dry weight) and specific N2 fixation (N2 fixed g-1 root dry weight) in soybean[J]. Plant and Soil,2004,258(1):281-292.
[7]严君,韩晓增,王守宇,等. 不同形态氮对大豆根瘤生长及固氮的影响[J]. 大豆科学,2009,28(4):674-677.
[8]李凯,郭宇琦,刘楚楠,等. 铵硝配比对大豆生长及结瘤固氮的影响[J]. 中国油料作物学报,2014,36(3):349-356.
[9]Bown H E,Watt M S,Clinton P W,et al. Influence of ammonium and nitrate supply on growth,dry matter partitioning,N uptake and photosynthetic capacity of Pinus radiata seedlings[J]. Trees,2010,24(6):1097-1107.
[10]Zhang H,Jennings A,Barlow P W,et al. Dual pathways for regulation of root branching by nitrate[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(11):6529-6534.
[11]Lü X C,Xia X A,Wang C,et al. Effects of changes in applied nitrogen concentrations on nodulation,nitrogen fixation and nitrogen accumulation during the soybean growth period[J]. Soil Science and Plant Nutrition,2019,65(5):479-489.
[12]Nishida H,Tanaka S,Handa Y,et al. A NIN-like protein mediates nitrate-induced control of root nodule symbiosis in Lotus japonicus[J]. Nature Communications,2018,9:499.
[13]Lim C W,Lee Y W,Lee S C,et al. Nitrate inhibits soybean nodulation by regulating expression of CLE genes[J]. Plant Science,2014,229:1-9.
[14]Dakora F D. A functional relationship between leghaemoglobin and nitrogenase based on novel measurements of the two proteins in legume root nodules[J]. Annals of Botany,1995,75(1):49-54.
[15]苗淑杰,乔云发,韩晓增. 2种形态氮源条件下磷对大豆结瘤固氮的影响[J]. 大豆科学,2006,25(3):250-253,258.
[16]Carroll B J,Hansen A P,McNeil D L,et al. Effect of oxygen supply on nitrogenase activity of nitrate-and dark-stressed soybean [Glycine max (L.) Merr.]plants[J]. Functional Plant Biology,1987,14(6):679.
[17]Reid D E,Ferguson B J,Gresshoff P M. Inoculation-and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation[J]. Molecular Plant-Microbe Interactions,2011,24(5):606-618.
[18]Okamoto S,Shinohara H,Mori T,et al. Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase[J]. Nature Communications,2013,4:2191.
[19]董守坤,刘丽君,马春梅,等. 利用 15N标记研究铵态氮与硝态氮对大豆的营养作用[J]. 大豆科学,2012,31(6):911-914.
[20]宋海星,申斯乐,马淑英,等. 硝态氮和氨态氮对大豆根瘤固氮的影响[J]. 大豆科学,1997,16(4):283-287.
[21]陈磊,朱月林,杨立飞,等. 氮素形态配比对菜用大豆生长及籽粒膨大中矿质营养含量的影响[J]. 西北农业学报,2010,19(10):189-193.
[22]la Menza N C,Monzon J P,Specht J E,et al. Is soybean yield limited by nitrogen supply?[J]. Field Crops Research,2017,213:204-212.
[23]王树起,韩晓增,乔云发,等. 施氮对大豆根瘤生长和结瘤固氮的影响[J]. 华北农学报,2009,24(2):176-179.
[24]王树起,韩晓增,乔云发,等. 施氮对大豆根系形态和氮素吸收积累的影响[J]. 中国生态农业学报,2009,17(6):1069-1073.
[25]Petricka J J,Winter C M,Benfey P N. Control of Arabidopsis root development[J]. Annual Review of Plant Biology,2012,63:563-590.
[26]Sincik M,Gksoy A T,Turan Z M. Soybean seed yield performances under different cultural practices[J]. Turkish Journal of Agriculture and Forestry,2009,33(2):111-118.
[27]陈慧,邸伟,姚玉波,等. 不同大豆品种根瘤固氮酶活性与固氮量差异研究[J]. 核农学报,2013,27(3):379-383.
[28]甘银波,陈静. 大豆不同生长阶段施用氮肥对生长、结瘤及产量的影响[J]. 大豆科学,1997,16(2):125-130.
[29]严君,韩晓增,王守宇,等. 不同施氮量及供氮方式对大豆根瘤生长及固氮的影响[J]. 江苏农业学报,2010,26(1):75-79.
[30]雍太文,董茜,刘文钰,等. 施氮方式对玉米-大豆套作体系下大豆根瘤固氮、光合特性及产量的影响[J]. 大豆科学,2013,32(6):791-796.
[31]Gulden R H,Vessey J K. Low concentrations of ammonium inhibit specific nodulation (nodule number g-1 root DW) in soybean [Glycine max (L.) Merr.][J]. Plant & Soil,1998,198(2):127-136.
[32]Saito A,Tanabata S,Tanabata T,et al. Effect of nitrate on nodule and root growth of soybean (Glycine max L. Merr.)[J]. International Journal of Molecular Sciences,2014,15(3):4464-4480.
[33]邸伟,金喜军,马春梅,等. 施氮水平对大豆氮素积累与产量影响的研究[J]. 核农学报,2010,24(3):612-617.
[34]Gibson A H,Harper J E. Nitrate effect on nodulation of soybean by Bradyrhizobium japonicum[J]. Crop Science,1985,25(3):497-501.
[35]Larrainzar E,Villar I,Rubio M C,et al. Hemoglobins in the legume-Rhizobium symbiosis[J]. New Phytologist,2020,228(2):472-484.
[36]Fujikake H,Yashima H,Sato T,et al. Rapid and reversible nitrate inhibition of nodule growth and N2 fixation activity in soybean [Glycine max (L.) Merr.][J]. Soil Science and Plant Nutrition,2002,48(2):211-217.
[37]Zhang M B,Su H N,Gresshoff P M,et al. Shoot-derived miR2111 controls legume root and nodule development[J]. Plant,Cell & Environment,2021,44(5):1627-1641.
[38]Wang R C,Xing X J,Crawford N. Nitrite acts as a transcriptome signal at micromolar concentrations in Arabidopsis roots[J]. Plant Physiology,2007,145(4):1735-1745.
[39]Nishida H,Handa Y,Tanaka S,et al. Expression of the CLE-RS3 gene suppresses root nodulation in Lotus japonicus[J]. Journal of Plant Research,2016,129(5):909-919.
[40]Hastwell A H,Bang T C D,Gresshoff P M,et al. CLE peptide-encoding gene families in Medicago truncatula and Lotus japonicus,compared with those of soybean,common bean and Arabidopsis[J]. Scientific Reports,2017,7:9384.
[41]Okamoto S,Kawaguchi M. Shoot HAR1 mediates nitrate inhibition of nodulation in Lotus japonicus[J]. Plant Signaling & Behavior,2015,10(5):e1000138.
[42]Jeudy C,Ruffel S,Freixes S,et al. Adaptation of Medicago truncatula to nitrogen limitation is modulated via local and systemic nodule developmental responses[J]. New Phytologist,2010,185(3):817-828.
[43]Lin J S,Li X L,Luo Z P,et al. NIN interacts with NLPs to mediate nitrate inhibition of nodulation in Medicago truncatula[J]. Nature Plants,2018,4(11):942-952.
[44]Ferguson B,Mens C,Hastwell A,et al. Legume nodulation:the host controls the party[J]. Plant,Cell & Environment,2019,42(1):41-51.
[45]Fujikake H,Yashima H,Sato T,et al. Rapid and reversible nitrate inhibition of nodule growth and N2 fixation activity in soybean [Glycine max (L.) Merr.][J]. Soil Science and Plant Nutrition,2002,48(2):211-217.
[46]Seneviratne G,van Holm L H J,Ekanayake E M H G S. Agronomic benefits of rhizobial inoculant use over nitrogen fertilizer application in tropical soybean[J]. Field Crops Research,2000,68(3):199-203.
[47]Bacanamwo M,Harper J E. Regulation of nitrogenase activity in Bradyrhizobium japonicum/soybean symbiosis by plant N status as determined by shoot C ∶N ratio[J]. Physiologia Plantarum,1996,98(3):529-538.
[48]柯丹霞,徐勤朕,杨娜,等. 高氮抑制豆科植物结瘤固氮机制研究进展[J]. 生物技术通报,2019,35(10):40-45.
[49]Abdel W A M,Zahran H H,Abd-Alla M H. Root-hair infection and nodulation of four grain legumes as affected by the form and the application time of nitrogen fertilizer[J]. Folia Microbiologica,1996,41(4):303-308.
[50]Becana M,Aparicio-Tejo P M,Sánchez-Díaz M. Nitrate and nitrite reduction by alfalfa root nodules:accumulation of nitrite in Rhizobium melioti bacteroids and senescence of nodules[J]. Physiologia Plantarum,1985,64(3):353-358.
[51]Vessey J K,Waterer J. In search of the mechanism of nitrate inhibition of nitrogenase activity in legume nodules:recent developments[J]. Physiologia Plantarum,1992,84(1):171-176.
[52]Meakin G E,Bueno E,Jepson B,et al. The contribution of bacteroidal nitrate and nitrite reduction to the formation of nitrosylleghaemoglobin complexes in soybean root nodules[J]. Microbiology,2007,153(2):411-419.
[53]Oldroyd G E D,Engstrom E M,Long S R. Ethylene inhibits the nod factor signal transduction pathway of Medicago truncatula[J]. The Plant Cell,2001,13(8):1835-1849.
[54]Caba J M,Recalde L,Ligero F. Nitrate-induced ethylene biosynthesis and the control of nodulation in alfalfa[J]. Plant,Cell & Environment,1998,21(1):87-93.
[55]Reid D E,Heckmann A B,Novák O,et al. CYTOKININ OXIDASE/DEHYDROGENASE3 maintains cytokinin homeostasis during root and nodule development in Lotus japonicus[J]. Plant Physiology,2015,170(2):1060-1074.
[56]Walch-Liu P,Neumann G,Bangerth F,et al. Rapid effects of nitrogen form on leaf morphogenesis in tobacco[J]. Journal of Experimental Botany,2000,51(343):227-237.
[57]夏玄,龚振平. 氮素与豆科作物固氮关系研究进展[J]. 东北农业大学学报,2017,48(1):79-88.
[58]方海燕,寸植贤,陈建斌,等. 大豆生长发育与根瘤形成的关系[J]. 农学学报,2014,4(6):1-4,23.
[59]丁洪,郭庆元,张学江. 氮肥对大豆不同类型品种结瘤固氮影响的差异性研究[J]. 大豆科学,1994,13(3):274-278.
[60]刘晓静,蒯佳林,李文卿,等. 硝态氮与铵态氮对紫花苜蓿根系生长及结瘤固氮的影响[J]. 甘肃农业大学学报,2011,46(5):106-110.
[61]Ju X T,Lu X,Gao Z L,et al. Processes and factors controlling N2O production in an intensively managed low carbon calcareous soil under sub-humid monsoon conditions[J]. Environmental Pollution,2011,159(4):1007-1016.
[62]杜臻杰,陈效民,张佳宝,等. 长期施肥对典型旱地红壤中硝态氮和铵态氮时空变异的影响[J]. 土壤通报,2010,41(3):611-616.
[63]严君,韩晓增. 盆栽条件下土壤无机氮浓度对大豆结瘤、固氮和产量的影响[J]. 中国农业科学,2014,47(10):1929-1938.

相似文献/References:

[1]赵银月,耿智德,王铁军.云南省大豆地方种质资源的籽粒特征特性分析及评价[J].江苏农业科学,2013,41(04):62.
[2]朱倩,谢飒英,谢三刚,等.稀土LaCl3对大豆叶绿素含量及a/b值的影响[J].江苏农业科学,2013,41(06):81.
 Zhu Qian,et al.Effect of LaCl3 on chlorophyll content and the ratio of chlorophyll a to chlorophyll b in soybean[J].Jiangsu Agricultural Sciences,2013,41(8):81.
[3]王宗标,王幸,徐泽俊,等.植物保健剂对大豆产量及农艺性状的影响[J].江苏农业科学,2013,41(06):85.
 Wang Zongbiao,et al.Effects of plant health care agent on yield and agronomic traits of soybean[J].Jiangsu Agricultural Sciences,2013,41(8):85.
[4]徐明坤,胥义.冷冻干燥法制备快速制浆半成品大豆的工艺条件优化[J].江苏农业科学,2013,41(06):216.
 Xu Mingkun,et al.Optimization of technological conditions for preparation of semi-finished soybean products for quick soybean milk production by freeze-drying method[J].Jiangsu Agricultural Sciences,2013,41(8):216.
[5]董锦,王建安,孙可可,等.水氮耦合对烟叶大量元素含量及烤后烟叶香气成分的影响[J].江苏农业科学,2015,43(12):134.
 Dong Jin,et al.Effects of water and nitrogen coupling on macroelement contents in tobacco leaves and aroma component in flue-cured tobacco leaves[J].Jiangsu Agricultural Sciences,2015,43(8):134.
[6]陈新,袁星星,崔晓艳,等.江苏省大豆生产发展布局与未来发展方向[J].江苏农业科学,2013,41(08):5.
 Chen Xin,et al.Layout and future direction of soybean production development in Jiangsu Province[J].Jiangsu Agricultural Sciences,2013,41(8):5.
[7]李丽丽,郎敬,杨洪一,等.大豆根际解磷菌的鉴定[J].江苏农业科学,2014,42(08):363.
 Li Lili,et al.Identification of phosphate-solubilizing bacteria in rhizosphere of soybean[J].Jiangsu Agricultural Sciences,2014,42(8):363.
[8]孙彦坤,于越,任红玉,等.不同生育期喷施稀土镧和铈对大豆膜透性的Hormesis效应[J].江苏农业科学,2016,44(03):88.
 Sun Yankun,et al.Hormetic effect of lanthanum and cerium on soybean membrane permeability in different growth period[J].Jiangsu Agricultural Sciences,2016,44(8):88.
[9]马绍华,易福金,王学君.中国大豆进口市场势力综合分析[J].江苏农业科学,2016,44(03):527.
 Ma Shaohua,et al.Comprehensive analysis of Chinas soybean import market forces[J].Jiangsu Agricultural Sciences,2016,44(8):527.
[10]高菊,李艳,高燕.UV-B辐射增强下氮素对珙桐幼苗生长和光合特性的影响[J].江苏农业科学,2013,41(10):343.
 Gao Ju,et al.Effects of nitrogen on growth and photosynthetic characteristics of Davidia involucrata seedlings under UV-B radiation[J].Jiangsu Agricultural Sciences,2013,41(8):343.

备注/Memo

备注/Memo:
收稿日期:2021-08-01
基金项目:国家自然科学基金(编号:41807037、31770541)。
作者简介:侯慧云(1990—),女,河北石家庄人,硕士,从事生物共生固氮研究。E-mail:houhuiyun210@163.com。
通信作者:高同国,博士,副教授,从事微生物植物互作研究。E-mail:gtgrxf@163.com。
更新日期/Last Update: 2022-04-20