[1]Schaller F. Enzymes of the biosynthesis of octadecanoid-derived signalling molecules[J]. Journal of Experimental Botany,2001,52(354):11-23.
[2]Wasternack C,Hause B. Jasmonates:biosynthesis,perception,signal transduction and action in plant stress response,growth and development[J]. Annals of Botany,2013,111(6):1021-1058.
[3]Song S S,Qi T C,Wasternack C,et al. Jasmonate signaling and crosstalk with gibberellin and ethylene[J]. Current Opinion in Plant Biology,2014,21:112-119.
[4]Vick B A,Zimmerman D C. The biosynthesis of jasmonic acid:a physiological role for plant lipoxygenase[J]. Biochemical and Biophysical Research Communications,1983,111(2):470-477.
[5]Gomi K. Jasmonic acid pathway in plants 2.0[J]. International Journal of Molecular Sciences,2021,22(7):3506.
[6]Wasternack C,Song S S. Jasmonates:biosynthesis,metabolism,and signaling by proteins activating and repressing transcription[J]. Journal of Experimental Botany,2017,68(6):1303-1321.
[7]Avramova V,AbdElgawad H,Zhang Z F,et al. Drought induces distinct growth response,protection,and recovery mechanisms in the maize leaf growth zone[J]. Plant Physiology,2015,169(2):1382-1396.
[8]Yuan L B,Dai Y S,Xie L J,et al. Jasmonate regulates plant responses to postsubmergence reoxygenation through transcriptional activation of antioxidant synthesis[J]. Plant Physiology,2017,173(3):1864-1880.
[9]Yang Z B,He C M,Ma Y,et al. Jasmonic acid enhances al-induced root growth inhibition[J]. Plant Physiology,2017,173(2):1420-1433.
[10]Clarkson D T,Hanson J B. The mineral nutrition of higher plants[J]. Annual Review of Plant Biology,1980,31:239-298.
[11]Kumar S,Stecher G,Tamura K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution,2016,33(7):1870-1874.
[12]Deléage G,Combet C,Blanchet C,et al. ANTHEPROT:an integrated protein sequence analysis software with client/server capabilities[J]. Computers in Biology and Medicine,2001,31(4):259-267.
[13]Emanuelsson O,Brunak S,von Heijne G,et al. Locating proteins in the cell using TargetP,SignalP and related tools[J]. Nature Protocols,2007,2(4):953-971.
[14]Horton P,Park K J,Obayashi T,et al. WoLF PSORT:protein localization predictor[J]. Nucleic Acids Research,2007,35:585-587.
[15]Biasini M,Bienert S,Waterhouse A,et al. SWISS-MODEL:modelling protein tertiary and quaternary structure using evolutionary information[J]. Nucleic Acids Research,2014,42(Web Server):w252-w258.
[16]Livak K J,Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 22-ΔΔCT method[J]. Methods 2001,25(4):402-408.
[17]Schmittgen T D,Livak K J. Analyzing real-time PCR data by the comparative CT method[J]. Nature Protocols,2008,3(6):1101-1108.
[18]Finn R D,Attwood T K,Babbitt P C,et al. InterPro in 2017-beyond protein family and domain annotations[J]. Nucleic Acids Research,2017,45(D):D190-D199.
[19]He Y H,Fukushige H,Hildebrand D F,et al. Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence[J]. Plant Physiology,2002,128(3):876-884.
[20]Troufflard S,Mullen W,Larson T R,et al. Potassium deficiency induces the biosynthesis of oxylipins and glucosinolates in Arabidopsis thaliana[J]. BMC Plant Biology,2010,10(1):172.
[21]Nikiforova V,Freitag J,Kempa S,et al. Transcriptome analysis of sulfur depletion in Arabidopsis thaliana:interlacing of biosynthetic pathways provides response specificity[J]. Plant Journal,2003,33(4):633-650.
[22]Hirai M Y,Fujiwara T,Awazuhara M,et al. Global expression profiling of sulfur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-l-serine as a general regulator of gene expression in response to sulfur nutrition[J]. Plant Journal,2003,33(4):651-663.
[23]Maruyama-Nakashita A,Inoue E,Watanabe-Takahashi A,et al. Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways[J]. Plant Physiology,2003,132(2):597-605.
[24]Hazman M,Hause B,Eiche E,et al. Increased tolerance to salt stress in OPDA-deficient rice ALLENE OXIDE CYCLASE mutants is linked to an increased ROS-scavenging activity[J]. Journal of Experimental Botany,2015,66(11):3339-3352.
[1]韩林贺,丁安明,孔英珍.普通烟草PMEI家族的鉴定与表达分析[J].江苏农业科学,2018,46(09):34.
Han Linhe,et al.Genome-wide identification and expression analysis of the PMEI family in Nicotiana tabacum[J].Jiangsu Agricultural Sciences,2018,46(18):34.
[2]吕敏,卫甜,刘怀阿,等.昆虫取食和机械损伤对棉花和玉米脂氧合酶活性的诱导作用[J].江苏农业科学,2021,49(10):86.
Lü Min,et al.Insect feeding and mechanical damage induce lipoxygenase activity in cotton and corn[J].Jiangsu Agricultural Sciences,2021,49(18):86.
[3]代文婷,刘战霞,陈伟君,等.脂氧合酶对甜瓜果实后熟软化生理及相关基因表达的影响[J].江苏农业科学,2024,52(1):128.
Dai Wenting,et al.Influences of lipoxygenase on post-ripening and softening physiology of muskmelon fruit and related gene expression[J].Jiangsu Agricultural Sciences,2024,52(18):128.
[4]武博寒,李鹏志,蒋红娟,等.普通烟草NtARF2基因克隆及表达模式分析[J].江苏农业科学,2025,53(4):94.
Wu Bohan,et al.Cloning and expression pattern analysis of NtARF2 gene in common tobacco[J].Jiangsu Agricultural Sciences,2025,53(18):94.