[1]杜世伟,李毅念,姚敏,等. 基于小麦穗部小穗图像分割的籽粒计数方法[J]. 南京农业大学学报,2018,41(4):742-751.
[2]鲍烈,王曼韬,刘江川,等. 基于卷积神经网络的小麦产量预估方法[J]. 浙江农业学报,2020,32(12):2244-2252.
[3]Huang M L,Chuang T C,Liao Y C. Application of transfer learning and image augmentation technology for tomato pest identification[J]. Sustainable Computing:Informatics and Systems,2022,33:100646.
[4]Kasinathan T,Uyyala S R. Machine learning ensemble with image processing for pest identification and classification in field crops[J]. Neural Computing and Applications,2021,33(13):7491-7504.
[5]刘洋,冯全,王书志. 基于轻量级CNN的植物病害识别方法及移动端应用[J]. 农业工程学报,2019,35(17):194-204.
[6]周维,牛永真,王亚炜,等. 基于改进的YOLOv4-GhostNet水稻病虫害识别方法[J]. 江苏农业学报,2022,38(3):685-695.
[7]耿磊,黄亚龙,郭永敏. 基于融合注意力机制的苹果品种分类方法[J]. 农业机械学报,2022,53(6):304-310.
[8]Li Q Y,Cai J H,Berger B,et al. Detecting spikes of wheat plants using neural networks with Laws texture energy[J]. Plant Methods,2017,13:83.
[9]汪传建,赵庆展,马永建,等. 基于卷积神经网络的无人机遥感农作物分类[J]. 农业机械学报,2019,50(11):161-168.
[10]Mekhalfi M L,Nicolò C,Ianniello I,et al. Vision system for automatic on-tree kiwifruit counting and yield estimation[J]. Sensors,2020,20(15):4214.
[11]Zhu Y J,Cao Z G,Lu H,et al. In-field automatic observation of wheat heading stage using computer vision[J]. Biosystems Engineering,2016,143:28-41.
[12]刘哲,黄文准,王利平. 基于改进K-means聚类算法的大田麦穗自动计数[J]. 农业工程学报,2019,35(3):174-181.
[13]李毅念,杜世伟,姚敏,等. 基于小麦群体图像的田间麦穗计数及产量预测方法[J]. 农业工程学报,2018,34(21):185-194.
[14]张领先,陈运强,李云霞,等. 基于卷积神经网络的冬小麦麦穗检测计数系统[J]. 农业机械学报,2019,50(3):144-150.
[15]鲍文霞,张鑫,胡根生,等. 基于深度卷积神经网络的田间麦穗密度估计及计数[J]. 农业工程学报,2020,36(21):186-193,323.
[16]Wang Y D,Qin Y X,Cui J L. Occlusion robust wheat ear counting algorithm based on deep learning[J]. Frontiers in Plant Science,2021,12:645899.
[17]孙俊,杨锴锋,罗元秋,等. 基于无人机图像的多尺度感知麦穗计数方法[J]. 农业工程学报,2021,37(23):136-144.
[18]Ren S Q,He K M,Girshick R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[19]He K M,Gkioxari G,Dollár P,et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision (ICCV).Venice:IEEE,2017:2980-2988.
[20]Liu W,Anguelov D,Erhan D,et al. SSD:single shot MultiBox detector[M]//Computer Vision-ECCV 2016.Cham:Springer International Publishing,2016:21-37.
[21]Redmon J,Farhadi A. YOLO9000:better,faster,stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:6517-6525.
[22]Ge Z,Liu S T,Wang F,et al. YOLOX:exceeding YOLO series in 2021[EB/OL]. (2021-08-06)[2022-08-10]. https://arxiv.org/abs/2107.08430.
[23]Zhang H Y,Cisse M,Dauphin Y N,et al. Mixup:beyond empirical risk minimization[EB/OL]. (2018-04-27)[2022-08-10]. https://arxiv.org/abs/1710.09412.