[1]王荣青,杨悦俭,周国治,等. 番茄抗青枯病筛选方法及其在抗青枯病育种中的应用[J]. 浙江农业学报,2007,19(2):89-92.
[2]孙妍,陈思宇,肖健,等. 不同果实形状番茄品种茎部内生细菌群落结构及代谢功能特征[J]. 西南农业学报,2021,34(12):2586-2595.
[3]Chitwood-Brown J,Vallad G E,Lee T G,et al. Breeding for resistance to Fusarium wilt of tomato:a review[J]. Genes,2021,12(11):1673.
[4]Olaniyi J O,Akanbi W B,Adejumo T,et al. Growth,fruit yield and nutritional quality of tomato varieties[J]. African Journal of Food Science,2010,4(6):398-402.
[5]Bhowmik D,Kumar K P S,Paswan S,et al. Tomato-a natural medicine and its health benefits[J]. Journal of Pharmacognosy and Phytochemistry,2012,1(1):33-43.
[6]Sujeet K,Ramanjini G P H,Banashree S,et al. Screening of tomato genotypes against bacterial wilt (Ralstonia solanacearum) and validation of resistance linked DNA markers[J]. Australasian Plant Pathology,2018,47:365-374.
[7]Golldack D,Lüking I,Yang O. Plant tolerance to drought and salinity:stress regulating transcription factors and their functional significance in the cellular transcriptional network[J]. Plant Cell Reports,2011,30(8):1383-1391.
[8]刘子刚,田佩耕,王宁,等. 马铃薯StWRKY转录因子的克隆和生物信息学分析[J]. 西南农业学报,2022,35(2):432-437.
[9]Chen Y,Zhang H,Zhang M,et al. Salicylic acid-responsive factor TcWRKY33 positively regulates taxol biosynthesis in Taxus chinensis in direct and indirect ways[J]. Frontiers in Plant Science,2021,12:697476.
[10]Kang G J,Yan D,Chen X L,et al. HbWRKY82,a novel IIc WRKY transcription factor from Hevea brasiliensis associated with abiotic stress tolerance and leaf senescence in Arabidopsis[J]. Physiologia Plantarum,2021,171(1):151-160.
[11]Feng X,Abubakar A S,Yu C,et al. Analysis of WRKY resistance gene family in Boehmeria nivea (L.) Gaudich:crosstalk mechanisms of secondary cell wall thickening and cadmium stress[J]. Frontiers in Plant Science,2022,13:812988.
[12]Sun S S,Ren Y X,Wang D X,et al. A group I WRKY transcription factor regulates mulberry mosaic dwarf-associated virus-triggered cell death in Nicotiana benthamiana[J]. Molecular Plant Pathology,2022,23(2):237-253.
[13]Rosado D,Ackermann A,Spassibojko O,et al. WRKY transcription factors and ethylene signaling modify root growth during the shade-avoidance response[J]. Plant Physiology,2022,188(2):1294-1311.
[14]Ishiguro S,Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein,SPF1,that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and pamylase from sweet potato[J]. Molecular and General Genetics,1994,244(6):563-571.
[15]Bencke-Malato M,Cabreira C,Wiebke-Strohm B,et al. Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhizi infection[J]. BMC Plant Biology,2014,14(1):236.
[16]Ning P,Liu C C,Kang J Q,et al. Genome-wide analysis of WRKY transcription factors in wheat (Triticum aestivum L.) and differential expression under water deficit condition[J]. Peer J,2017,5:e3232.
[17]Zhang T,Tan D F,Zhang L,et al. Phylogenetic analysis and drought-responsive expression profiles of the WRKY transcription factor family in maize[J]. Agri Gene,2017,3:99-108.
[18]Ramamoorthy R,Jiang S Y,Kumar N,et al. A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments[J]. Plant and Cell Physiology,2008,49(6):865-879.
[19]Zhang C,Wang D D,Yang C H,et al. Genome-wide identification of the potato WRKY transcription factor family[J]. PLoS One,2017,12(7):1-20.
[20]Dong J X,Chen C H,Chen Z X. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response[J]. Plant Molecular Biology,2003,51(1):21-37.
[21]Ling J,Jiang W J,Zhang Y,et al. Genome-wide analysis of WRKY gene family in Cucumis sativus[J]. BMC Genomics,2011,12:471.
[22]Yang B,Jiang Y Q,Rahman M H,et al. Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments[J]. BMC Plant Biology,2009,9(1):68.
[23]Huang S X,Gao Y F,Liu J K,et al. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum[J]. Molecular Genetics and Genomics,2012,287(6):495-513.
[24]张红,姜景彬,许向阳,等. 番茄WRKY基因家族的生物信息学分析[J]. 分子植物育种,2016,14(8):1965-1976.
[25]Eulgem T,Rushton P J,Robatzek S,et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science,2000,5(5):199-206.
[26]Rushton P J,Somssich I E,Ringler P,et al. WRKY transcription factors[J]. Trends in Plant Science,2010,15(5):247-258.
[27]Wu K L,Guo Z J,Wang H H,et al. The WRKY family of transcription factors in rice and Arabidopsis and their origins[J]. DNA Research,2005,12(1):9-26.
[28]Zhang Y J,Wang L J. The WRKY transcription factor superfamily:its origin in eukaryotes and expansion in plants[J]. BMC Evolutionary Biology,2005,5:1-13.
[29]Yang L,Zhao X,Yang F,et al. PtrWRKY19,a novel WRKY transcription factor,contributes to the regulation of pith secondary wall formation in Populus trichocarpa[J]. Scientific Reports,2016,6:18643.
[30]Wang Y,Li Y,He S P,et al. A cotton (Gossypium hirsutum) WRKY transcription factor (GhWRKY22) participates in regulating anther/pollen development[J]. Plant Physiology Biochemistry,2019,141:231-239.
[31]Zhou T T,Yang X M,Wang G B,et al. Molecular cloning and expression analysis of a WRKY transcription factor gene,GbWRKY20,from Ginkgo biloba[J]. Plant Signaling & Behavior,2021,16(10):1930442.
[32]Zhang Y,Yang X Q,Nvsvrot T,et al. The transcription factor WRKY75 regulates the development of adventitious roots,lateral buds and callus by modulating hydrogen peroxide content in poplar[J]. Journal of Experimental Botany,2022,73(5):1483-1498.
[33]Spyropoulou E A,Haring M A,Schuurink R C. RNA sequencing on Solanum lycopersicum trichomes identifies transcription factors that activate terpene synthase promoters[J]. BMC Genomics,2014,15(1):402.
[34]Li R,Shi C L,Wang X,et al. Inflorescence abscission protein SlIDL6 promotes low light intensity-induced tomato flower abscission[J]. Plant Physiology,2021,186(2):1288-1301.
[35]Singh D,Debnath P,Roohi,et al. Expression of the tomato WRKY gene,SlWRKY23,alters root sensitivity to ethylene,auxin and JA and affects aerial architecture in transgenic Arabidopsis[J]. Physiology and Molecular Biology of Plants,2020,26(6):1187-1199.
[36]Gu L J,Dou L L,Guo Y N,et al. The WRKY transcription factor GhWRKY27 coordinates the senescence regulatory pathway in upland cotton (Gossypium hirsutum L.)[J]. BMC Plant Biology,2019,19(1):116.
[37]Doll J,Muth M,Riester L,et al. Arabidopsis thaliana WRKY25 transcription factor mediates oxidative stress tolerance and regulates senescence in a redox-dependent manner[J]. Frontiers in Plant Science,2020,10:1734.
[38]Li L,Li K,Ali A,et al. AtWAKL10,a cell wall associated receptor-like kinase,negatively regulates leaf senescence in Arabidopsis thaliana[J]. International Journal of Molecular Sciences,2021,22(9):4885.
[39]Cao Z Y,Wu P Y,Gao H M,et al. Transcriptome-wide characterization of the WRKY family genes in Lonicera macranthoides and the role of LmWRKY16 in plant senescence[J]. Genes Genomics,2022,44(2):219-235.
[40]王璐. 番茄果实后熟与叶片衰老相关的S1WRKY转录因子功能分析[D]. 广州:华南农业大学,2016:31-46.
[41]Wang Z R,Gao M,Li Y F,et al. SlWRKY37 positively regulates jasmonic acid-and dark-induced leaf senescence in tomato[J]. Journal of Experimental Botany,2022,73(18):6207-6225.
[42]Cheng Y,Ahammed G J,Yu J H,et al. Corrigendum:Putative WRKYs associated with regulation of fruit ripening revealed by detailed expression analysis of the WRKY gene family in pepper[J]. Scientific Reports,2017,7:43498.
[43]Gan Z Y,Yuan X,Shan N,et al. AcWRKY40 mediates ethylene biosynthesis during postharvest ripening in kiwifruit[J]. Plant Science,2021,309:110948.
[44]Zhang W W,Zhao S Q,Gu S,et al. FvWRKY48 binds to the pectate lyase FvPLA promoter to control fruit softening in Fragaria vesca[J]. Plant Physiology,2022,189(2):1037-1049.
[45]贾宁. 番茄后熟相关WRKY基因的表达调控[D]. 广州:华南农业大学,2018:31-54.
[46]Liu X X,Huang Y M,Qiu Z K,et al. Comparative transcriptome analysis of differentially expressed genes between the fruit peel and flesh of the purple tomato cultivar ‘Indigo Rose’[J]. Plant Signaling Behavior,2020,15(6):1752534.
[47]Yuan Y,Ren S R,Liu X F,et al. SlWRKY35 positively regulates carotenoid biosynthesis by activating the MEP pathway in tomato fruit[J]. New Phytologist,2022,234(1):164-178.
[48]Arhondakis S,Bita C E,Perrakis A,et al. In silico transcriptional regulatory networks involved in tomato fruit ripening[J]. Frontiers in Plant Science,2016,7:1234.
[49]Wang L,Zhang X L,Wang L,et al. Regulation of ethylene-responsive SlWRKYs involved in color change during tomato fruit ripening[J]. Scientific Reports,2017,7(1):16674.
[50]Shi W Y,Du Y T,Ma J,et al. The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean[J]. International Journal of Molecular Sciences,2018,19(12):4087.
[51]Dabi M,Agarwal P,Agarwal P K. Functional validation of JcWRKY2,a group Ⅲ transcription factor toward mitigating salinity Stress in transgenic tobacco[J]. DNA and Cell Biology,2019,38(11):1278-1291.
[52]Wang M Q,Huang Q X,Lin P,et al. The overexpression of a transcription factor gene VbWRKY32 enhances the cold tolerance in Verbena bonariensis[J]. Frontiers in Plant Science,2020,10:1746.
[53]Gulzar F,Fu J Y,Zhu C Y,et al. Maize WRKY transcription factor ZmWRKY79 positively regulates drought tolerance through elevating ABA biosynthesis[J]. International Journal of Molecular Sciences,2021,22(18):10080.
[54]Niu Y T,Li X T,Xu C,et al. Analysis of drought and salt-alkali tolerance in tobacco by overexpressing WRKY39 gene from Populus trichocarpa[J]. Plant Signaling Behavior,2021,16(7):1918885.
[55]Fei J,Wang Y S,Cheng H,et al. The Kandelia obovata transcription factor KoWRKY40 enhances cold tolerance in transgenic Arabidopsis[J]. BMC Plant Biology,2022,22(1):274.
[56]Yu S J,Lan X,Zhou J C,et al. Dioscorea composita WRKY3 positively regulates salt-stress tolerance in transgenic Arabidopsis thaliana[J]. Journal of Plant Physiology,2022,269:153592.
[57]刘畅,牛向丽,刘继恺,等. 番茄转录因子SlWRKY53的分离及生物学功能鉴定[J]. 四川大学学报(自然科学版),2013,50(6):1347-1354.
[58]孙晓春,高永峰,李会容,等. 番茄SlWRKY23基因的克隆及其抗病性和耐盐性分析[J]. 中国农业科技导报,2014,16(5):39-46.
[59]张凝,高永峰,孙晓春,等. 番茄SlWRKY1转录因子在植物生物和非生物胁迫中的调控[J]. 四川大学学报(自然科学版),2015,52(2):435-440.
[60]Kissoudis C. Genetics and regulation of combined abiotic and biotic stress tolerance in tomato[D]. Wageningen:Wageningen University,2016:32-54.
[61]Hichri I,Muhovski Y,iková E,et al. The Solanum lycopersicum WRKY3 transcription factor SlWRKY3 is involved in salt stress tolerance in tomato[J]. Frontiers in Plant Science,2017,8:1343.
[62]樊蕾,高志英. 番茄SlWRKY44基因的克隆及表达[J]. 北方园艺,2018(22):6-10.
[63]Albaladejo I,Egea I,Morales B,et al. Identification of key genes involved in the phenotypic alterations of res (restored cell structure by salinity) tomato mutant and its recovery induced by salt stress through transcriptomic analysis[J]. BMC Plant Biology,2018,18(1):213.
[64]Birhanu M W,Kissoudis C,van der Linden C G,et al. WRKY gene silencing enhances tolerance to salt stress in transgenic tomato[J]. Journal of Biology,Agriculture and Healthcare,2020,10(17):14-25.
[65]Karkute S G,Easwaran M,Gujjar R S,et al. Protein modeling and molecular dynamics simulation of SlWRKY4 protein cloned from drought tolerant tomato (Solanum habrochaites) line EC520061[J]. Journal of Molecular Modeling,2015,21(10):255.
[66]Ahammed G J,Li X,Yang Y,et al. Tomato WRKY81 acts as a negative regulator for drought tolerance by modulating guard cell H2O2-mediated stomatal closure[J]. Environmental and Experimental Botany,2019,171:103960.
[67]Ahammed G J,Li X,Mao Q,et al. The SlWRKY81 transcription factor inhibits stomatal closure by attenuating nitric oxide accumulation in the guard cells of tomato under drought[J]. Physiologia Plantarum,2021,172(2):885-895.
[68]Zhou J,Wang J,Yu J Q,et al. Role and regulation of autophagy in heat stress responses of tomato plants[J]. Frontiers in Plant Science,2014,5:174.
[69]Chen L,Yang Y,Liu C,et al. Characterization of WRKY transcription factors in Solanum lycopersicum reveals collinearity and their expression patterns under cold treatment[J]. Biochemical and Biophysical Research Communications,2015,464(3):962-968.
[70]Zhou J,Wang J,Zheng Z Y,et al. Characterization of the promoter and extended C-terminal domain of Arabidopsis WRKY33 and functional analysis of tomato WRKY33 homologues in plant stress responses[J]. Journal of Experimental Botany,2015,66(15):4567-4583.
[71]王梦琪. 番茄乙烯响应因子ERF15在低温抗性中的作用[D]. 杭州:浙江大学,2016:15-45.
[72]王艺璇,孟庆伟,马娜娜. 番茄低温响应WRKY转录因子的鉴定和分析[J]. 植物生理学报,2021,57(6):1349-1362.
[73]周靖翔. 低温胁迫下番茄果实的冷应激反应及抗冷相关因子的筛选与分析[D]. 淄博:山东理工大学,2021:23-54.
[74]Guo M Y,Yang F J,Liu C X,et al. A single-nucleotide polymorphism in WRKY33 promoter is associated with the cold sensitivity in cultivated tomato[J]. New Phytologist,2022,236(3):989-1005.
[75]Ye J,Wang X,Hu T X,et al. An InDel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance[J]. The Plant Cell,2017,29(9):2249-2268.
[76]Wang Z R,Liu L,Su H,et al. Jasmonate and aluminum crosstalk in tomato:identification and expression analysis of WRKYs and ALMTs during JA/Al-regulated root growth[J]. Plant Physiology Biochemistry,2020,154:409-418.
[77]王茹,陈超,于丽杰,等. 番茄SlWRKY6基因克隆及其在重金属胁迫下的表达分析[J]. 华北农学报,2021,36(1):54-62.
[78]金慧,栾雨时. 番茄WRKY基因的克隆与分析[J]. 西北农业学报,2011,20(4):96-101.
[79]Li J B,Luan Y S,Jin H. The tomato SlWRKY gene plays an important role in the regulation of defense responses in tobacco[J]. Biochemical and Biophysical Research Communications,2012,427(3):671-676.
[80]Li J B,Luan Y S,Liu Z. Overexpression of SpWRKY1 promotes resistance to Phytophthora nicotianae and tolerance to salt and drought stress in transgenic tobacco[J]. Physiology Plantarum,2015,155(3):248-266.
[81]Li J B,Luan Y S,Liu Z. SpWRKY1 mediates resistance to Phytophthora infestans and tolerance to salt and drought stress by modulating reactive oxygen species homeostasis and expression of defense-related genes in tomato[J]. Plant Cell,Tissue and Organ Culture,2015,123(1):67-81.
[82]魏娟娟,杨伟,潘宇,等. 番茄WRKY41基因的克隆、表达分析与转基因植株的获得[J]. 西南大学学报(自然科学版),2017,39(1):46-54.
[83]Jafarov H R,Gasimov K G. Expression pattern of SlWRKY33 and SlERF5 in tomato plants under elevated salt concentration and water deficit[J]. Factors of Experimental Evolution of Organisms,2017,20:266-270.
[84]陈青奇,张红,姜景彬,等. 番茄部分WRKY基因非生物胁迫表达和SlWRKY50基因沉默分析[J]. 东北农业大学学报,2018,49(7):8-18.
[85]Ashrafi-Dehkordi E,Alemzadeh A,Tanaka N,et al. Meta-analysis of transcriptomic responses to biotic and abiotic stress in tomato[J]. PeerJ,2018,6:e4631.
[86]周涛,王娟,王露露,等. 番茄转录因子基因SlWRKY16的克隆及原核表达分析[J]. 园艺学报,2020,47(7):1312-1322.
[87]Gao Y F,Liu J K,Yang F M,et al. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum[J]. Physiology Plantarum,2020,168(1):98-117.
[88]Liu Q,Li X,Yan S J,et al. OsWRKY67 positively regulates blast and bacteria blight resistance by direct activation of PR genes in rice[J]. BMC Plant Biology,2018,18(1):257.
[89]Cui X X,Yan Q,Gan S P,et al. GmWRKY40,a member of the WRKY transcription factor genes identified from Glycine max L.,enhanced the resistance to Phytophthora sojae[J]. BMC Plant Biology,2019,19(1):598.
[90]Wang X,Li J J,Guo J,et al. The WRKY transcription factor PlWRKY65 enhances the resistance of Paeonia lactiflora (herbaceous peony) to Alternaria tenuissima[J]. Horticulture Research,2020,7:57.
[91]Chen T T,Li Y P,Xie L H,et al. AaWRKY17,a positive regulator of artemisinin biosynthesis,is involved in resistance to Pseudomonas syringae in Artemisia annua[J]. Horticulture Research,2021,8(1):217.
[92]Yang S,Zhang Y W,Cai W W,et al. CaWRKY28 Cys249 is required for interaction with CaWRKY40 in the regulation of pepper immunity to Ralstonia solanacearum[J]. Molecular Plant-Microbe Interactions,2021,34(7):733-745.
[93]Wang Z,Deng J,Liang T T,et al. Lilium regale Wilson WRKY3 modulates an antimicrobial peptide gene,LrDef1,during response to Fusarium oxysporum[J]. BMC Plant Biology,2022,22(1):257.
[94]Xu X H,Wang H,Liu J Q,et al. OsWRKY62 and OsWRKY76 interact with importin α1s for negative regulation of defensive responses in rice nucleus[J]. Rice,2022,15(1):12.
[95]王丽芳,于涌鲲,杜希华,等. 茉莉酸等3种因素刺激番茄LeWRKY1的表达特征分析[J]. 中国农学通报,2010,26(23):73-76.
[96]Molan Y Y,El-Komy M H. Expression of Sl-WRKY1 transcription factor during B. cinerea tomato interaction in resistant and susceptible cultivars[J]. International Journal of Plant Breeding Genetics,2010,4(1):1-12.
[97]孙清鹏,李娜,于涌鲲,等. LeWRKY2基因的克隆及功能分析[J]. 中国农业科学,2012,45(7):1257-1264.
[98]Liu B,Hong Y B,Zhang Y F,et al. Tomato WRKY transcriptional factor SlDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress[J]. Plant Science,2014,227(5):145-156.
[99]Lu M,Wang L F,Du X H,et al. Molecular cloning and expression analysis of jasmonic acid dependent but salicylic acid independent LeWRKY1[J]. Genetics and Molecular Research,2015,14(4):15390-15398.
[100]蔡俊. SlWRKY3通过TPK1b负调控番茄对灰霉病的抗性[D]. 武汉:华中农业大学,2020:25-33.
[101]Shu P,Zhang S J,Li Y J,et al. Over-expression of SlWRKY46 in tomato plants increases susceptibility to Botrytis cinerea by modulating ROS homeostasis and SA and JA signaling pathways[J]. Plant Physiology and Biochemistry,2021,166:1-9.
[102]Huang H,Zhao W C,Li C H,et al. SlVQ15 interacts with jasmonate-ZIM domain proteins and SlWRKY31 to regulate defense response in tomato[J]. Plant Physiology,2022,190(1):828-842.
[103]曾辉,高永峰,刘继恺,等. 番茄SlWRKY80基因共抑制表达影响转基因植株抗逆性的研究[J]. 四川大学学报(自然科学版),2014,51(5):1035-1042.
[104]Sun X C,Gao Y F,Li H R,et al. Over-expression of SlWRKY39 leads to enhanced resistance to multiple stress factors in tomato[J]. Journal of Plant Biology,2015,58(1):52-60.
[105]Ramos R N,Martin G B,Pombo M A,et al. WRKY22 and WRKY25 transcription factors are positive regulators of defense responses in Nicotiana benthamiana[J]. Plant Molecular Biology,2021,105(1/2):65-82.
[106]Li J B,Luan Y S. Molecular cloning and characterization of a pathogen-induced WRKY transcription factor gene from late blight resistant tomato varieties Solanum pimpinellifolium L3708[J]. Physiological and Molecular Plant Pathology,2014,87:25-31.
[107]刘震. 番茄SpWRKY6转录因子的抗病功能研究[D]. 大连:大连理工大学,2016:19-52.
[108]Cui J,Xu P S,Meng J,et al. Transcriptome signatures of tomato leaf induced by Phytophthora infestans and functional identification of transcription factor SpWRKY3[J]. Theoretical and Applied Genetics,2018,131(4):787-800.
[109]Hong Y H,Cui J,Liu Z,et al. SpWRKY6 acts as a positive regulator during tomato resistance to Phytophthora infestans infection[J]. Biochemical and Biophysical Research Communications,2018,506(4):787-792.
[110]Cui J,Jiang N,Meng J,et al. LncRNA33732-respiratory burst oxidase module associated with WRKY1 in tomato-Phytophthora infestans interactions[J]. The Plant Journal,2019,97(5):933-946.
[111]Hofmann M G,Sinha A K,Proels R K,et al. Cloning and characterization of a novel LpWRKY1 transcription factor in tomato[J]. Plant Physiology and Biochemistry,2008,46(5/6):533-540.
[112]Mandal A,Sarkar D,Kundu S,et al. Mechanism of regulation of tomato TRN1 gene expression in late infection with tomato leaf curl New Delhi virus (ToLCNDV)[J]. Plant Science,2015,241:221-237.
[113]Roylawar P,Panda S,Kamble A. Comparative analysis of BABA and Piriformospora indica mediated priming of defence-related genes in tomato against early blight[J]. Physiological and Molecular Plant Pathology,2015,91:88-95.
[114]Shinde B A,Dholakia B B,Hussain K,et al. Dynamic metabolic reprogramming of steroidal glycol-alkaloid and phenylpropanoid biosynthesis may impart early blight resistance in wild tomato (Solanum arcanum Peralta)[J]. Plant Molecular Biology,2017,95(4/5):411-423.
[115]Shinde B A,Dholakia B B,Hussain K,et al. WRKY1 acts as a key component improving resistance against Alternaria solani in wild tomato,Solanum arcanum Peralta[J]. Plant Biotechnology Journal,2018,16(8):1502-1513.
[116]崔丹丹. 番茄青枯病发病过程中ARFs和WRKYs的表达分析[D]. 广州:华南农业大学,2018:29-35.
[117]Naveed Z A,Ali G S. Comparative transcriptome analysis between a resistant and a susceptible wild tomato accession in response to Phytophthora parasitica[J]. International Journal of Molecular Sciences,2018,19(12):3735.
[118]Pentimone I,Colagiero M,Ferrara M,et al. Time-dependent effects of Pochonia chlamydosporia endophytism on gene expression profiles of colonized tomato roots[J]. Applied Microbiology and Biotechnology,2019,103(20):8511-8527.
[119]Du H S,Wang Y Q,Yang J J,et al. Comparative transcriptome analysis of resistant and susceptible tomato lines in response to infection by Xanthomonas perforans Race T3[J]. Frontiers in Plant Science,2015,6(428):161-171.
[120]Huang Y,Li M Y,Wu P,et al. Members of WRKY Group Ⅲ transcription factors are important in TYLCV defense signaling pathway in tomato (Solanum lycopersicum)[J]. BMC Genomics,2016,17(1):788.
[121]Aamir M,Singh V K,Dubey M K,et al. Structural and functional dissection of differentially expressed tomato WRKY transcripts in host defense response against the vascular wilt pathogen (Fusarium oxysporum f. sp. lycopersici)[J]. PLoS One,2018,13(4):1-43.
[122]Aamir M,Kashyap S P,Zehra A,et al. Trichoderma erinaceum bio-priming modulates the WRKYs defense programming in tomato against the Fusarium oxysporum f. sp. lycopersici (Fol) challenged condition[J]. Frontiers in Plant Science,2019,10:911.
[123]Gharsallah C,Gharsallah Chouchane S,Werghi S,et al. Tomato contrasting genotypes responses under combined salinity and viral stresses[J]. Physiology and Molecular Biology of Plants,2020,26(7):1411-1424.
[124]Bhattarai K K,Atamian H S,Kaloshian I,et al. WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by the tomato R gene Mi-1[J]. Plant Journal,2010,63(2):229-240.
[125]Atamian H S,Eulgem T,Kaloshian I. SlWRKY70 is required for Mi-1-mediated resistance to aphids and nematodes in tomato[J]. Planta,2012,235(2):299-309.
[126]Chinnapandi B,Bucki P,Braun Miyara S. SlWRKY45,nematode-responsive tomato WRKY gene,enhances susceptibility to the root knot nematode;M. javanica infection[J]. Plant Signaling Behavior,2017,12(12):e1356530.
[127]Hu Z R,Wang R,Zheng M,et al. TaWRKY51 promotes lateral root formation through negative regulation of ethylene biosynthesis in wheat (Triticum aestivum L.)[J]. The Plant Journal,2018,96(2):372-388.
[128]Ma Q B,Xia Z L,Cai Z D,et al. GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in Arabidopsis thaliana[J]. Frontiers in Plant Science,2019,9:1979.
[129]Zhao L,Zhang W J,Song Q H,et al. A WRKY transcription factor,TaWRKY40-D,promotes leaf senescence associated with jasmonic acid and abscisic acid pathways in wheat[J]. Plant Biology,2020,22(6):1072-1085.
[130]Bi M M,Li X Y,Yan X,et al. Chrysanthemum WRKY15-1 promotes resistance to Puccinia horiana Henn. via the salicylic acid signaling pathway[J]. Horticulture Research,2021,8(1):6.
[131]Lim C,Kang K,Shim Y,et al. Inactivating transcription factor OsWRKY5 enhances drought tolerance through abscisic acid signaling pathways[J]. Plant Physiology,2022,188(4):1900-1916.
[132]于涌鲲,王丽芳,杜希华,等. LeWRKY1基因的克隆及分析[J]. 植物生理学报,2010,46(12):1225-1231.
[133]Wang L F,Yu Y K,Du X H,et al. Research on expression of LeWRKY1 in tomato induced by jasmonic acid and other two factors[J]. Agricultural Science & Technology,2011,12(8):1133-1135,1138.
[134]Lindo L,Cardoza R E,Lorenzana A,et al. Identification of plant genes putatively involved in the perception of fungal ergosterol-squalene[J]. Journal of Integrative Plant Biology,2020,62(7):927-947.
[135]周涛,王娟,胡佳蕙,等. 番茄转录因子基因SlWRKY6的克隆与原核表达分析[J]. 西北植物学报,2020,40(11):1824-1832.
[136]Zhao W H,Li Y H,Fan S Z,et al. The transcription factor WRKY32 affects tomato fruit colour by regulating YELLOW FRUITED-TOMATO 1,a core component of ethylene signal transduction[J]. Journal of Experimental Botany,2021,72(12):4269-4282.
[137]Wang Z R,Gao M,Li Y F,et al. SlWRKY37 positively regulates jasmonic acid-and dark-induced leaf senescence in tomato[J]. Journal of Experimental Botany,2022,73(18):6207-6225.
[1]何从亮,毛久庚,甘小虎,等.玻璃温室番茄长季节基质袋栽培技术[J].江苏农业科学,2013,41(04):158.
[2]李永灿,余文贵,陈怀谷,等.番茄灰霉病菌产毒条件优化[J].江苏农业科学,2013,41(05):94.
Li Yongcan,et al.Optimization of toxigenic conditions of tomato Botrytis cinerea[J].Jiangsu Agricultural Sciences,2013,41(13):94.
[3]赵秋月,甘潇,张广臣.Na2CO3胁迫对番茄幼苗生长的影响[J].江苏农业科学,2013,41(05):128.
Zhao Qiuyue,et al.Effect of Na2CO3 stress on growth of tomato seedlings[J].Jiangsu Agricultural Sciences,2013,41(13):128.
[4]耿德刚,徐俊伟,戈振超,等.温室大棚番茄滴灌试验研究及效益分析[J].江苏农业科学,2013,41(05):132.
Geng Degang,et al.Drip irrigation experimental and benefit analysis on greenhouse tomato[J].Jiangsu Agricultural Sciences,2013,41(13):132.
[5]杜中平,聂书明.不同配方基质对番茄生长特性、光合特性及产量的影响[J].江苏农业科学,2013,41(05):138.
Du Zhongping,et al.Effects of different substrates on growth,photosynthetic characteristics and yield of tomato[J].Jiangsu Agricultural Sciences,2013,41(13):138.
[6]赵河,毛秀杰,叶景学.抗叶霉病不同基因型番茄的光合特性[J].江苏农业科学,2014,42(11):185.
Zhao He,et al(8).Photosynthetic characteristics of different genotypes of tomato with resistance to leaf mold[J].Jiangsu Agricultural Sciences,2014,42(13):185.
[7]陈素娟,孙娜娜.不同基质配比对番茄秧苗生长的影响[J].江苏农业科学,2013,41(06):128.
Chen Sujuan,et al.Effect of different substrate compositions on growth of tomato seedling[J].Jiangsu Agricultural Sciences,2013,41(13):128.
[8]孙禛禛,吴秋霞,温新宇,等.转反义LetAPX基因番茄抗氧化酶活性在苗期、花期、果期的变化[J].江苏农业科学,2015,43(12):188.
Sun Zhenzhen,et al.Study on antioxidant enzymes activity during seedling,flowering and fruiting of tomato with antisense LetAPX gene[J].Jiangsu Agricultural Sciences,2015,43(13):188.
[9]李晓慧,张恩让,何玉安,等.亚高温及外源物质调节下番茄的生理响应[J].江苏农业科学,2013,41(07):135.
Li Xiaohui,et al.Physiological response of tomato under the regulation of sub-high temperature and exogenous substances[J].Jiangsu Agricultural Sciences,2013,41(13):135.
[10]李建宏,张楠,张泽,等.番茄红素提取与测定方法的优化[J].江苏农业科学,2013,41(08):259.
Li Jianhong,et al.Optimization of lycopene extraction and determination method[J].Jiangsu Agricultural Sciences,2013,41(13):259.
[11]陈银霞,王志泽,冯成蒿,等.番茄抗根结线虫病Mi基因探索与WRKY转录因子参与抗病调控的研究进展[J].江苏农业科学,2025,53(4):16.
Chen Yinxia,et al.Research progress of Mi gene against root-knot nematode disease in tomato and WRKY transcription factors involved in disease resistance regulation[J].Jiangsu Agricultural Sciences,2025,53(13):16.