[1]Shen G Z,Liao J J,Guo H D,et al. Poyang Lake wetland vegetation biomass inversion using polarimetric RADARSAT-2 synthetic aperture radar data[J]. Journal of Applied Remote Sensing,2015,9(1):096077.
[2]Liu J G,Pattey E,Miller J R,et al. Estimating crop stresses,aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model[J]. Remote Sensing of Environment,2010,114(6):1167-1177.
[3]Sharma P,Leigh L,Chang J,et al. Above-ground biomass estimation in oats using UAV remote sensing and machine learning[J]. Sensors,2022,22(2):601.
[4]David R M,Rosser N J,Donoghue D N M. Improving above ground biomass estimates of Southern Africa dryland forests by combining Sentinel-1 SAR and Sentinel-2 multispectral imagery[J]. Remote Sensing of Environment,2022,282:113232.
[5]Anchal S,Bahuguna S,Priti,et al. Non-destructive method of biomass and nitrogen (N) level estimation in Stevia rebaudiana using various multispectral indices[J]. Geocarto International,2022,37(22):6409-6421.
[6]Atkinson Amorim J G,Schreiber L V,de Souza M R Q,et al. Biomass estimation of spring wheat with machine learning methods using UAV-based multispectral imaging[J]. International Journal of Remote Sensing,2022,43(13):4758-4773.
[7]Shao G M,Han W T,Zhang H H,et al. Estimation of transpiration coefficient and aboveground biomass in maize using time-series UAV multispectral imagery[J]. The Crop Journal,2022,10(5):1376-1385.
[8]段博. 基于无人机多光谱影像的水稻生长参数提取和估产[D]. 武汉:武汉大学.
[9]吴培强,任广波,张程飞,等. 无人机多光谱和LiDAR的红树林精细识别与生物量估算[J]. 遥感学报,2022,26(6):1169-1181.
[10]李宗鹏.基于无人机多源光谱遥感影像预测冬小麦地上生物量和产量研究[D]. 郑州:河南农业大学,2022.
[11]王式琴. 基于高光谱的棉花叶片氮素变化特征及估算建模研究[D]. 阿拉尔:塔里木大学,2021.
[12]包玲. 阴影的掩膜和内陆水体的遥感提取[D]. 南京:南京师范大学,2014.
[13]杨宁,崔文轩,张智韬,等. 无人机多光谱遥感反演不同深度土壤盐分[J]. 农业工程学报,2020,36(22):13-21.
[14]毕志博. 基于高光谱的水稻叶片叶绿素含量反演方法研究[D]. 沈阳:沈阳农业大学,2019.
[15]刘金然. 基于无人机遥感影像的棉花主要生长参数反演[D]. 济南:山东师范大学,2019.
[16]王来刚,贺佳,郑国清,等. 基于无人机多光谱遥感的玉米FPAR估算[J]. 农业机械学报,2022,53(10):202-210.
[17]苏维,张泽,侯彤瑜,等. 基于无人机冠层高光谱的滴灌棉田地上部生物量估测[J]. 农机化研究,2021,43(11):177-183.
[18]易翔,张立福,吕新,等. 基于无人机高光谱融合连续投影算法估算棉花地上部生物量[J]. 棉花学报,2021,33(3):224-234.
[19]陶惠林,冯海宽,徐良骥,等. 基于无人机高光谱遥感数据的冬小麦生物量估算[J]. 江苏农业学报,2020,36(5):1154-1162.
[20]周萌,韩晓旭,郑恒彪,等. 基于参数化和非参数化法的棉花生物量高光谱遥感估算[J]. 中国农业科学,2021,54(20):4299-4311.
[21]石雅娇,陈鹏飞. 基于无人机高光谱影像的玉米地上生物量反演[J]. 中国农学通报,2019,35(17):117-123.
[22]邓江,谷海斌,王泽,等. 基于无人机遥感的棉花主要生育时期地上生物量估算及验证[J]. 干旱地区农业研究,2019,37(5):55-61,69.
[23]刘杨,冯海宽,黄珏,等. 基于无人机高光谱特征参数和株高估算马铃薯地上生物量[J]. 光谱学与光谱分析,2021,41(3):903-911.
[24]Dong J W,Xiao X M,Wagle P,et al. Comparison of four EVI-based models for estimating gross primary production of maize and soybean croplands and tallgrass prairie under severe drought[J]. Remote Sensing of Environment,2015,162:154-168.
[25]Majasalmi T,Rautiainen M,Stenberg P.M odeled and measured fPAR in a boreal forest:validation and application of a new model[J]. Agricultural and Forest Meteorology,2014,189/190:118-124.
[26]李龙伟. 基于时间序列遥感数据的毛竹林物候监测、分类和地上生物量估测研究[D]. 杭州:浙江农林大学,2020.
[27]朱吉祥. 基于光谱信息的夏玉米水氮状况诊断及产量评估[D]. 泰安:山东农业大学,2021.
[28]赵涵. 杨树水力学特性与生长速率及生物量的关系[D]. 杨凌:西北农林科技大学,2021.
[1]金星.基于LED光源的多光谱诱虫灯研究[J].江苏农业科学,2015,43(10):476.
Jin Xing.Study on multi-spectral insert light trap based on LED light source[J].Jiangsu Agricultural Sciences,2015,43(15):476.
[2]孙世泽,汪传建,刘伟,等.无人机多光谱草地估产中的最佳波段组合研究[J].江苏农业科学,2018,46(04):190.
Sun Shize,et al.Study on optimum band combination in estimating biomass of grassland based on UAV multispectral images[J].Jiangsu Agricultural Sciences,2018,46(15):190.
[3]梁钊雄,周红艺,吴国威,等.基于无人机影像的崩岗空间分布特征研究[J].江苏农业科学,2018,46(04):220.
Liang Zhaoxiong,et al.Study on spatial distribution of collapse base on UAV images[J].Jiangsu Agricultural Sciences,2018,46(15):220.
[4]琚书存,汪志存,张东彦,等.基于高分辨率无人机影像的喷药除草效果评估[J].江苏农业科学,2019,47(06):76.
Ju Shucun,et al.Evaluation of spraying and weeding effect based on high resolution UAV image[J].Jiangsu Agricultural Sciences,2019,47(15):76.
[5]苏瑞东.无人机在现代农业中的应用综述[J].江苏农业科学,2019,47(21):75.
Su Ruidong.Application of UAVs in modern agriculture: a review[J].Jiangsu Agricultural Sciences,2019,47(15):75.
[6]孙星星,王凯,李红阳,等.航空超低量喷雾技术在水稻生产上应用现状、存在问题及发展趋势[J].江苏农业科学,2020,48(13):29.
Sun Xingxing,et al.Application status, existing problems and development trends of aviation ultra-low volume spray technology in rice production[J].Jiangsu Agricultural Sciences,2020,48(15):29.
[7]林峰.虚拟现实技术在农业可视化场景快速构建中的应用[J].江苏农业科学,2020,48(14):268.
Lin Feng.Application of virtual reality technology in rapid construction of agricultural visualization scene[J].Jiangsu Agricultural Sciences,2020,48(15):268.
[8]辛京达,陈成,刀剑,等.基于土壤光谱特性的土壤类型区分研究[J].江苏农业科学,2021,49(10):207.
Xin Jingda,et al.Study on differentiation of soil types based on soil spectral characteristics[J].Jiangsu Agricultural Sciences,2021,49(15):207.
[9]杨栋淏,李亚强,刀剑,等.基于无人机多光谱与地面高光谱遥感的土壤主要养分含量估测[J].江苏农业科学,2022,50(2):178.
Yang Donghao,et al.Estimation of soil main nutrient content based on UAV multispectral and ground hyperspectral remote sensing[J].Jiangsu Agricultural Sciences,2022,50(15):178.
[10]王羿,丁鸣鸣,何菁,等.基于不同建模方法的土壤pH值无人机遥感影像反演[J].江苏农业科学,2022,50(14):224.
Wang Yi,et al.Soil pH UAV remote sensing image inversion based on different modeling methods[J].Jiangsu Agricultural Sciences,2022,50(15):224.
[11]徐国钦,黄明凤,黄建平.基于改进语义分割模型的无人机多光谱图像杂草分割[J].江苏农业科学,2022,50(12):212.
Xu Guoqin,et al.Segmentation of UAV multispectral weed image based on improved semantic segmentation model[J].Jiangsu Agricultural Sciences,2022,50(15):212.
[12]王佳丽,蒯雁,杨成伟,等.基于无人机多光谱的烤烟冠层叶绿素含量反演[J].江苏农业科学,2024,52(15):232.
Wang Jiali,et al.Inversion of chlorophyll content in canopy of flue-cured tobacco based on UAV multispectrum[J].Jiangsu Agricultural Sciences,2024,52(15):232.