[1]中国农药信息网,中华人民共和国农业农村部农药检定所. 农药登记数据[EB/OL]. [2022-06-03]. http://www.chinapesticide.org.cn/hysj/index.jhtml.
[2]王晓庭. 生物农药发展现状及趋势分析[J]. 山西林业科技,2021,50(4):61-62.
[3]刘月悦. 纳米生物农药-6%烟碱微胶囊包载缓释剂的制备与药效评价[D]. 雅安:四川农业大学,2014:13-14.
[4]刘潇. 生物化学农药发展现状及趋势分析[J]. 化学工业,2021,39(1):53-58.
[5]朱英慧. 生物农药应用中存在的问题及对策[J]. 南方农业,2018,12(15):62-63.
[6]李金金. 探究生物农药的发展现状与趋势[J]. 农家参谋,2020(22):202.
[7]Zhao X,Cui H X,Wang Y,et al. Development strategies and prospects of nano-based smart pesticide formulation[J]. Journal of Agricultural and Food Chemistry,2018,66(26):6504-6512.
[8]潘华,李文婧,吴立涛,等. 新型纳米农药制剂载体材料的研究进展[J]. 材料导报,2020,34(增刊2):1099-1103.
[9]Pascoli M,Lopes-Oliveira P J,Fraceto L F,et al. State of the art of polymeric nanoparticles as carrier systems with agricultural applications:a minireview[J]. Energy Ecology and Environment,2018,3(7):137-148.
[10]Huang B N,Chen F F,Shen Y E,et al. Advances in targeted pesticides with environmentally responsive controlled release by nanotechnology[J]. Nanomaterials,2018,8(2):102.
[11]Kah M,Hofmann T. Nanopesticide research:current trends and future priorities[J]. Environment International,2014,63:224-235.
[12]Kumar S,Nehra M,Dilbaghi N,et al. Nano-based smart pesticide formulations:emerging opportunities for agriculture[J]. Journal of Controlled Release,2019,294:131-153.
[13]Abasian P,Ghanavati S,Rahebi S,et al. Polymeric nanocarriers in targeted drug delivery systems:a review[J]. Polymers for Advanced Technologies,2020,31(12):2939-2954.
[14]Chen H,Yuan L,Song W,et al. Biocompatible polymer materials:role of protein-surface interactions[J]. Progress in Polymer Science,2008,33(11):1059-1087.
[15]Feng B H,Ashraf M A,Peng L F.Characterization of particle shape,zeta potential,loading efficiency and outdoor stability for chitosan-ricinoleic acid loaded with rotenone[J]. Open Life Sciences,2016,11(1):380-386.
[16]Kim H,Lah M S. Templated and template-free fabrication strategies for zero-dimensional hollow MOF superstructures[J]. Dalton Transactions,2017,46(19):6146-6158.
[17]闫硕,蒋沁宏,沈杰. 纳米农药及载体材料的增效机理研究现状[J]. 植物保护学报,2022,49(1):366-381.
[18]Peng R F,Yang D J,Qiu X Q,et al. Preparation of self-dispersed lignin-based drug-loaded material and its application in avermectin nano-formulation[J]. International Journal of Biological Macromolecules,2020,151:421-427.
[19]Yang Y,Cheng J G,Garamus V M,et al. Preparation of an environmentally friendly formulation of the insecticide nicotine hydrochloride through encapsulation in chitosan/tripolyphosphate nanoparticles[J]. Journal of Agricultural and Food Chemistry,2018,66(5):1067-1074.
[20]Zhou M S,Xiong Z C,Yang D J,et al. Preparation of slow release nanopesticide microspheres from benzoyl lignin[J]. Holzforschung,2018,72(7):599-607.
[21]Sun C J,Zeng Z H,Cui H X,et al. Polymer-based nanoinsecticides:current developments,environmental risks and future challenges. A review[J]. Biotechnol Agron Soc Environ,2020,24(2):59-69.
[22]Lu B T,Lv X K,Le Y. Chitosan-modified PLGA nanoparticles for control-released drug delivery[J]. Polymers,2019,11(2):304-318.
[23]Sun C J,Yu M L,Zeng Z H,et al. Biocidal activity of polylactic acid-based nano-formulated abamectin on Acyrthosiphon pisum (Hemiptera:Aphididae) and the aphid predator Adalia bipunctata (Coleoptera:Coccinellidae)[J]. PLoS One,2020,15(2):e0228817.
[24]Sun D Q,Hussain H I,Yi Z F,et al. Delivery of abscisic acid to plants using glutathione responsive mesoporous silica nanoparticles[J]. Journal of Nanoscience and Nanotechnology,2018,18(3):1615-1625.
[25]Wang Q,OHare D.Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets[J]. Chemical Reviews,2012,112(7):4124-4155.
[26]Nadiminti P P,Sharma H,Kada S R,et al. Use of Mg-Al nanoclay as an efficient vehicle for the delivery of the herbicide 2,4-dichlorophenoxyacetic acid[J]. ACS Sustainable Chemistry & Engineering,2019,7(12):10962-10970.
[27]Sun C J,Wang Y,Zhao X A,et al. Properties of avermectin delivery system using surfactant-modified mesoporous activated carbon as a carrier[J]. Journal of Nanomaterials,2018(2):1-6.
[28]Shan Y P,Xu C L,Zhang H J,et al. Polydopamine-modified metal-organic frameworks,NH2-Fe-MIL-101,as pH-sensitive nanocarriers for controlled pesticide release[J]. Nanomaterials,2020,10(10):2000.
[29]Rao C Y,Liao D H,Pan Y,et al. Novel formulations of metal-organic frameworks for controlled drug delivery[J]. Expert Opinion on Drug Delivery,2022,19(10):1183-1202.
[30]Ma Y J,Nolte R J M,Cornelissen J J L M.Virus-based nanocarriers for drug delivery[J]. Advanced Drug Delivery Reviews,2012,64(9):811-825.
[31]Masarapu H,Patel B K,Chariou P L,et al. Physalis mottle virus-like particles as nanocarriers for imaging reagents and drugs[J]. Biomacromolecules,2017,18(12):4141-4153.
[32]Yan Y F,Hou H W,Ren T R,et al. Utilization of environmental waste cyanobacteria as a pesticide carrier:studies on controlled release and photostability of avermectin[J]. Colloids and Surfaces B:Biointerfaces,2013,102:341-347.
[33]孙长娇,王琰,赵翔,等. 纳米农药剂型与其减施增效机理研究进展[J]. 农药学学报,2020,22(2):205-213.
[34]de Oliveira J L,Campos E V R,Bakshi M,et al. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture:prospects and promises[J]. Biotechnology Advances,2014,32(8):1550-1561.
[35]Stuart M A C,Huck W T S,Genzer J,et al. Emerging applications of stimuli-responsive polymer materials[J]. Nature Materials,2010,9(2):101-113.
[36]Kamari A,Aljafree N F A,Yusoff S N M. Oleoyl-carboxymethyl chitosan as a new carrier agent for the rotenone pesticide[J]. Environmental Chemistry Letters,2016,14(3):417-422.
[37]Aljafree N F A,Kamari A. Synthesis,characterisation and potential application of deoxycholic acid carboxymethyl chitosan as a carrier agent for rotenone[J]. Journal of Polymer Research,2018,25(6):133-145.
[38]Zhang Y,Luo M M,Xu W P,et al. Avermectin confers its cytotoxic effects by inducing DNA damage and mitochondria-associated apoptosis[J]. Journal of Agricultural and Food Chemistry,2016,64(36):6895-6902.
[39]Cui B,Wang C X,Zhao X A,et al. Characterization and evaluation of avermectin solid nanodispersion prepared by microprecipitation and lyophilisation techniques[J]. PLoS One,2018,13(1):e0191742.
[40]He S,Zhang W B,Li D G,et al. Preparation and characterization of double-shelled avermectin microcapsules based on copolymer matrix of silica-glutaraldehyde-chitosan[J]. Journal of Materials Chemistry B,2013,1(9):1270-1278.
[41]Chen H Y,Zhi H,Liang J E,et al. Development of leaf-adhesive pesticide nanocapsules with pH-responsive release to enhance retention time on crop leaves and improve utilization efficiency[J]. Journal of Materials Chemistry B,2021,9(3):783-792.
[42]Zhou M,Wang D,Yang D,et al. Avermectin loaded nanosphere prepared from acylated alkali lignin showed anti-photolysis property and controlled release performance[J]. Industrial Crops and Products,2019,137:453-459.
[43]Kamari A,Aljafree N F A,Yusoff S N M. N,N-dimethylhexadecyl carboxymethyl chitosan as a potential carrier agent for rotenone[J]. International Journal of Biological Macromolecules,2016,88:263-272.
[44]Yusoff S N M,Kamari A.N-deoxycholic acid-O-glycol chitosan as a potential carrier agent for botanical pesticide rotenone[J]. Journal of Applied Polymer Science,2018,135(47):46855.
[45]Lao S B,Zhang Z X,Xu H H,et al. Novel amphiphilic chitosan derivatives:synthesis,characterization and micellar solubilization of rotenone[J]. Carbohydrate Polymers,2010,82(4):1136-1142.
[46]Gupta S C,Prasad S,Tyagi A K,et al. Neem (Azadirachta indica):an indian traditional panacea with modern molecular basis[J]. Phytomedicine,2017,34:14-20.
[47]Shah F M,Razaq M,Ali A,et al. Comparative role of neem seed extract,moringa leaf extract and imidacloprid in the management of wheat aphids in relation to yield losses in Pakistan[J]. PLoS One,2017,12(9):1-24.
[48]Kumar J,Shakil N A,Singh M K,et al. Development of controlled release formulations of azadirachtin-a employing poly(ethylene glycol) based amphiphilic copolymers[J]. Journal of Environmental Science and Health(Part B),2010,45(4):310-314.
[49]Plohl O,Gyergyek S,Zemljicˇ L F. Mesoporous silica nanoparticles modified with N-rich polymer as a potentially environmentally-friendly delivery system for pesticides[J]. Microporous and Mesoporous Materials,2021,310:110663.
[50]Wang C Y,Lou X Y,Cai Z,et al. Supramolecular nanoplatform based on mesoporous silica nanocarriers and pillararene nanogates for fungus control[J]. ACS Applied Materials & Interfaces,2021,13(27):32295-32306.
[51]Liang Y,Gao Y H,Wang W C,et al. Fabrication of smart stimuli-responsive mesoporous organosilica nano-vehicles for targeted pesticide delivery[J]. J Hazard Mater,2020,389:122075-122086.
[52]张志龙. 中空介孔二氧化硅的制备及其性能研究[D]. 南京:东南大学,2016:9-10.
[53]Kaziem A E,Gao Y H,Zhang Y,et al. α-Amylase triggered carriers based on cyclodextrin anchored hollow mesoporous silica for enhancing insecticidal activity of avermectin against Plutella xylostella[J]. Journal of Hazardous Materials,2018,359:213-221.
[54]Gao Y H,Zhang Y H,He S,et al. Fabrication of a hollow mesoporous silica hybrid to improve the targeting of a pesticide[J]. Chemical Engineering Journal,2019,364:361-369.
[55]Gupta V K,Carrott P J M,Singh R,et al. Cellulose:a review as natural,modified and activated carbon adsorbent[J]. Bioresource Technology,2016,216:1066-1076.
[56]孙长娇,崔海信,刘琪,等. 介孔活性炭阿维菌素载药系统的性能研究[J]. 农药学学报,2010,12(2):214-220.
[57]Baldassarre F,de Stradis A,Altamura G,et al. Application of calcium carbonate nanocarriers for controlled release of phytodrugs against Xylella fastidiosa pathogen[J]. Pure and Applied Chemistry,2020,92(3):429-444.
[58]肖豆鑫. 基于纤维素碳酸钙载体的功能化农药制剂构建及性能研究[D]. 杭州:浙江大学,2021:7-8.
[59]Qian H,Hu B,Wang Z,et al. Effects of validamycin on some enzymatic activities in soil[J]. Environ Monit Assess,2007,125(1/2/3):1-8.
[60]Qian K,Shi T Y,Tang T,et al. Preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani[J]. Microchimica Acta,2011,173(1):51-57.
[61]Rao W H,Zhan Y T,Chen S L,et al. Flowerlike Mg(OH)2 cross-nanosheets for controlling Cry1Ac protein loss:evaluation of insecticidal activity and biosecurity[J]. Journal of Agricultural and Food Chemistry,2018,66(14):3651-3657.
[62]Jenne M,Kambham M,Tollamadugu N V K V P,et al. The use of slow releasing nanoparticle encapsulated azadirachtin formulations for the management of Caryedon serratus O.(groundnut bruchid)[J]. IET Nanobiotechnology,2018,12(7):963-967.
[63]Deng L X,He J J,Li B R,et al. Study of a new 3D MOF and its adsorption,slow release and biological activity in water-soluble and oil-soluble pesticides[J]. Polyhedron,2020,190:114752.
[64]Liang W L,Cheng J L,Zhang J D,et al. pH-responsive on-demand alkaloids release from core-shell ZnO@ZIF-8 nanosphere for synergistic control of bacterial wilt disease[J]. ACS Nano,2022,16(2):2762-2773.
[65]Cao J,Guenther R H,Sit T L,et al. Development of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode control[J]. ACS Applied Materials & Interfaces,2015,7(18):9546-9553.
[66]de Oliveira J L,Campos E V R,Germano-Costa T,et al. Association of zein nanoparticles with botanical compounds for effective pest control systems[J]. Pest Management Science,2019,75(7):1855-1865.
[67]Monteiro R A,Camara M C,de Oliveira J L,et al. Zein based-nanoparticles loaded botanical pesticides in pest control:an enzyme stimuli-responsive approach aiming sustainable agriculture[J]. Journal of Hazardous Materials,2021,417:126004.
[68]Wu J H,Du C L,Zhang J M,et al. Synthesis of Metarhizium anisopliae-chitosan nanoparticles and their pathogenicity against Plutella xylostella (Linnaeus)[J]. Microorganisms,2021,10(1):1-15.
[69]Gabriel Paulraj M,Ignacimuthu S,Gandhi M R,et al. Comparative studies of tripolyphosphate and glutaraldehyde cross-linked chitosan-botanical pesticide nanoparticles and their agricultural applications[J]. International Journal of Biological Macromolecules,2017,104:1813-1819.
[70]Fu Z N,Chen K,Li L,et al. Spherical and spindle-like abamectin-loaded nanoparticles by flash nanoprecipitation for southern root-knot nematode control:preparation and characterization[J]. Nanomaterials,2018,8(6):449.
[71]Papanikolaou N E,Kalaitzaki A,Karamaouna F,et al. Nano-formulation enhances insecticidal activity of natural pyrethrins against Aphis gossypii (Hemiptera:Aphididae) and retains their harmless effect to non-target predators[J]. Environmental Science and Pollution Research,2018,25(11):10243-10249.
[72]Wang A Q,Wang Y,Sun C J,et al. Fabrication,characterization,and biological activity of avermectin nano-delivery systems with different particle sizes[J]. Nanoscale Research Letters,2018,13(1):2.
[73]Liu X X,Zheng Y,Zhang S B,et al. Perylenediimide-cored cationic nanocarriers deliver virus DNA to kill insect pests[J]. Polymer Chemistry,2016,7(22):3740-3746.
[74]Zhang Y,Liu B Y,Huang K X,et al. Eco-friendly castor oil-based delivery system with sustained pesticide release and enhanced retention[J]. ACS Applied Materials & Interfaces,2020,12(33):37607-37618.
[75]Yan S,Hu Q A,Li J H,et al. A star polycation acts as a drug nanocarrier to improve the toxicity and persistence of botanical pesticides[J]. ACS Sustainable Chemistry & Engineering,2019,7(20):17406-17413.
[76]Shen Z C,Wen H J,Zhou H J,et al. Coordination bonding-based polydopamine-modified mesoporous silica for sustained avermectin release[J]. Materials Science and Engineering(C),2019,105:110073.
[77]Sattary M,Amini J,Hallaj R. Antifungal activity of the lemongrass and clove oil encapsulated in mesoporous silica nanoparticles against wheats take-all disease[J]. Pesticide Biochemistry and Physiology,2020,170:104696.
[78]Feng J G,Chen W,Shen Y M,et al. Fabrication of abamectin-loaded mesoporous silica nanoparticles by emulsion-solvent evaporation to improve photolysis stability and extend insecticidal activity[J]. Nanotechnology,2020,31(34):345705.
[79]Fu Z N,Li L,Wang Y M,et al. Direct preparation of drug-loaded mesoporous silica nanoparticles by sequential flash nanoprecipitation[J]. Chemical Engineering Journal,2020,382:122905.
[80]Mattos B D,Rojas O J,Magalhes W L E. Biogenic silica nanoparticles loaded with neem bark extract as green,slow-release biocide[J]. Journal of Cleaner Production,2017,142:4206-4213.
[1]胡永红,曹峥,杨文革,等.多效霉素研究进展[J].江苏农业科学,2013,41(12):1.
Hu Yonghong,et al.Research progress of polyoxin[J].Jiangsu Agricultural Sciences,2013,41(17):1.
[2]龙亚飞,王啸,邱树毅,等.农用多抗霉素对不同地域莱氏野村菌的抑制效果[J].江苏农业科学,2015,43(01):144.
Long Yafei,et al.Inhibitory effect of agricultural polyoxin on Nomuraea rileyi from different regions[J].Jiangsu Agricultural Sciences,2015,43(17):144.
[3]张爱华,任志成,王壮,等.不同生物源农药对西洋参主要病害的室内抑菌活性及田间防效[J].江苏农业科学,2015,43(11):197.
Zhang Aihua,et al.Antifungal and field control effects of different fungicides to main pathogens of American ginseng[J].Jiangsu Agricultural Sciences,2015,43(17):197.
[4]徐婧,沈晓兰,周捷,等.生物农药茶多酚微乳剂的制备及其对稻瘟病菌的抑制效果[J].江苏农业科学,2017,45(19):191.
Xu Jing,et al.Preparation of biological pesticide tea polyphenols micro emulsion and its inhibitory effect on Magnaporthe grisea[J].Jiangsu Agricultural Sciences,2017,45(17):191.
[5]刘文,赵蔓菁,张国庆,等.玻璃温室番茄烟粉虱发生动态与防治技术研究[J].江苏农业科学,2018,46(11):87.
Liu wen,et al.Study on occurrence dynamics and control techniques of Bemisia tabaci in glasshouse[J].Jiangsu Agricultural Sciences,2018,46(17):87.
[6]席新明,邱凌,邱洪臣,等.木醋酸-沼液耦合喷施对苹果树病虫害的防治效果[J].江苏农业科学,2019,47(04):101.
Xi Xinming,et al.Control effect of wood acetic acid-biogas slurry coupled spraying on diseases and insect pests of apple tree[J].Jiangsu Agricultural Sciences,2019,47(17):101.
[7]王艳,刘琴,黄金金,等.内生放线菌SR-1102对蔬菜立枯病的防效及其促生作用[J].江苏农业科学,2020,48(07):123.
Wang Yan,et al.Control effect of endophytic actinomycete SR-1102 on rhizoctonia rot and its growth promoting effect[J].Jiangsu Agricultural Sciences,2020,48(17):123.
[8]徐胜,齐振宏,黄炜虹,等.公共农技推广对农户施药行为的影响——基于PSM模型的实证研究[J].江苏农业科学,2021,49(2):229.
Xu Sheng,et al.Impact of public agricultural technology extension on farmers drug application behavior—Empirical study based on PSM model[J].Jiangsu Agricultural Sciences,2021,49(17):229.
[9]李金龙,玉香甩,罗美云,等.凤庆茶黄蓟马发生规律及农药防控技术[J].江苏农业科学,2021,49(8):118.
Li Jinlong,et al.Study on occurrence of Scirtothrips dorsalis Hood and control technology of pesticides in Fengqing tea plantation[J].Jiangsu Agricultural Sciences,2021,49(17):118.
[10]徐重新,张江兆,胡晓丹,等.农药联合复配在农作物病虫害防治上的研究进展[J].江苏农业科学,2023,51(4):8.
Xu Chongxin,et al.Research progress of pesticide combination in crop diseases and insect pests control[J].Jiangsu Agricultural Sciences,2023,51(17):8.