[1]刘杰,曾娟,杨清坡,等. 2023年全国农作物重大病虫害发生趋势预报[J]. 中国植保导刊,2023,43(1):32-35.
[2]赵立新,侯发东,吕正超,等. 基于迁移学习的棉花叶部病虫害图像识别[J]. 农业工程学报,2020,36(7):184-191.
[3]樊湘鹏,许燕,周建平,等. 基于迁移学习和改进CNN的葡萄叶部病害检测系统[J]. 农业工程学报,2021,37(6):151-159.
[4]刘斌,贾润昌,朱先语,等. 面向移动端的苹果叶部病虫害轻量级识别模型[J]. 农业工程学报,2022,38(6):130-139.
[5]张善文,许新华,齐国红,等. 基于可形变VGG-16模型的田间作物害虫检测方法[J]. 农业工程学报,2021,37(18):188-194.
[6]Espejo-Garcia B,Malounas I,Mylonas N,et al. Using EfficientNet and transfer learning for image-based diagnosis of nutrient deficiencies[J]. Computers and Electronics in Agriculture,2022,196:106868.
[7]Peng H X,Li Z H,Zhou Z Y,et al. Weed detection in paddy field using an improved RetinaNet network[J]. Computers and Electronics in Agriculture,2022,199:107179.
[8]Hu J,Shen L,Sun G.Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.June 18-23,2018,Salt Lake City,UT,USA.IEEE,2018:7132-7141.
[9]Zhao X ,Li K Y,Li Y X,et al. Identification method of vegetable diseases based on transfer learning and attention mechanism[J]. Computers and Electronics in Agriculture,2022,193:106703.
[10]Zhao Y,Sun C D,Xu X,et al. RIC-Net:a plant disease classification model based on the fusion of Inception and residual structure and embedded attention mechanism[J]. Computers and Electronics in Agriculture,2022,193:106644.
[11]赵辉,曹宇航,岳有军,等. 基于改进DenseNet的田间杂草识别[J]. 农业工程学报,2021,37(18):136-142.
[12]Wang Q L,Wu B G,Zhu P F,et al. ECA-net:efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).June 13-19,2020.Seattle,WA,USA.IEEE,2020:11531-11539.
[13]孙俊,朱伟栋,罗元秋,等. 基于改进MobileNet-V2的田间农作物叶片病害识别[J]. 农业工程学报,2021,37(22):161-169.
[14]甘雨,郭庆文,王春桃,等. 基于改进EfficientNet模型的作物害虫识别[J]. 农业工程学报,2022,38(1):203-211.
[15]Hou Q B,Zhou D Q,Feng J S. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).June 20-25,2021.Nashville,TN,USA.IEEE,2021:13713-13722.
[16]宋怀波,江梅,王云飞,等. 融合卷积神经网络与视觉注意机制的苹果幼果高效检测方法[J]. 农业工程学报,2021,37(9):297-303.
[17]Wang X L,Girshick R,Gupta A,et al. Non-local neural networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.June 18-23,2018.Salt Lake City,UT,USA.IEEE,2018:7794-7803.
[18]Yang L,Zhang R Y,Li L,et al. Simam:a simple,parameter-free attention module for convolutional neural networks[C]//International conference on machine learning. PMLR,2021:11863-11874.
[19]Webb B S,Dhruv N T,Solomon S G,et al. Early and late mechanisms of surround suppression in striate cortex of macaque[J]. The Journal of Neuroscience,2005,25(50):11666-11675.
[20]He K M,Zhang X Y,Ren S Q,et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).June 27-30,2016.Las Vegas,NV,USA.IEEE,2016:770-778.
[21]Sandler M,Howard A,Zhu M L,et al. MobileNetV2:inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.June 18-23,2018.Salt Lake City,UT.IEEE,2018:4510-4520.
[22]Huang G,Liu Z A,van Der Maaten L,et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).July 21-26,2017.Honolulu,HI.IEEE,2017:4700-4708.
[23]Tan M,Le Q. Efficientnet:rethinking model scaling for convolutional neural networks[C]//International conference on machine learning. PMLR,2019:6105-6114.
[1]王怀宇,李景丽.基于纹理特征的玉米苗期田间杂草识别[J].江苏农业科学,2014,42(07):143.
Wang Huaiyu,et al.Weed identification in field during seedling stage of maize based on textural features[J].Jiangsu Agricultural Sciences,2014,42(20):143.
[2]朱景福,李雪.聚类算法在玉米叶片病斑降维识别中的应用[J].江苏农业科学,2015,43(01):405.
Zhu Jingfu,et al.Application of clustering algorithm in recognition of corn leaf disease dimensionality reduction image[J].Jiangsu Agricultural Sciences,2015,43(20):405.
[3]朱景福,李雪.玉米叶片病害彩色图像识别的降维和聚类方法[J].江苏农业科学,2016,44(07):350.
Zhu Jingfu,et al.Dimensionality reduction and clustering method for recognition of corn leaf disease color image[J].Jiangsu Agricultural Sciences,2016,44(20):350.
[4]牛冲,牛昱光,李寒,等.基于像灰度直方图特征图的草莓病虫害识别[J].江苏农业科学,2017,45(04):169.
Niu Chong,et al.Recognition of diseases and insect pests of strawberry based on image gray histogram feature[J].Jiangsu Agricultural Sciences,2017,45(20):169.
[5]李妍,朱景福,罗文博,等.玉米叶片病斑多光谱特征提取及识别方法[J].江苏农业科学,2017,45(09):184.
Li Yan,et al.Extraction and recognition method of multi spectral feature of corn leaf spot[J].Jiangsu Agricultural Sciences,2017,45(20):184.
[6]李婷,吴克宁.基于遥感技术的耕地质量评价研究进展与展望[J].江苏农业科学,2018,46(15):5.
Li Ting,et al.Research progress and prospects of cultivated land quality evaluation based on remote sensing technology[J].Jiangsu Agricultural Sciences,2018,46(20):5.
[7]杨新周,杨兰芬,田孟华,等.不同产地白花蛇舌草傅里叶红外光谱识别[J].江苏农业科学,2019,47(15):212.
Yang Xinzhou,et al.Identification of Hedyotis diffusa from different habitats by Fourier infrared spectrum[J].Jiangsu Agricultural Sciences,2019,47(20):212.
[8]赵子娟,刘东,杭中桥.作物遥感识别方法研究现状及展望[J].江苏农业科学,2019,47(16):45.
Zhao Zijuan,et al.Research status and prospect of crop remote sensing identification methods[J].Jiangsu Agricultural Sciences,2019,47(20):45.
[9]王松,谢银燕,张成彬,等.荔枝病虫害及其防治研究进展[J].江苏农业科学,2019,47(17):120.
Wang Song,et al.Research progress on prevention and control of Litchi chinensis pests and diseases[J].Jiangsu Agricultural Sciences,2019,47(20):120.
[10]叶佳英,邓飞,王佩欣,等.基于机器视觉的珍珠颜色特征提取与识别[J].江苏农业科学,2019,47(20):226.
Ye Jiaying,et al.Pearl color feature extraction and recognition based on machine vision[J].Jiangsu Agricultural Sciences,2019,47(20):226.