[1]李君明,项朝阳,王孝宣,等. “十三五”我国番茄产业现状及展望[J]. 中国蔬菜,2021(2):13-20.
[2]翟肇裕,曹益飞,徐焕良,等. 农作物病虫害识别关键技术研究综述[J]. 农业机械学报,2021,52(7):1-18.
[3]于明,李若曦,阎刚,等. 基于颜色掩膜网络和自注意力机制的叶片病害识别方法[J]. 农业机械学报,2022,53(8):337-344.
[4]Gao R,Wang R,Feng L,et al. Dual-branch,efficient,channel attention-based crop disease identification[J]. Computers and Electronics in Agriculture,2021,190:106410.
[5]牛学德,高丙朋,南新元,等. 基于改进DenseNet卷积神经网络的番茄叶片病害检测[J]. 江苏农业学报,2022,38(1):129-134.
[6]Woo S,Park J,Lee J Y,et al. CBAM:convolutional block attention module[C]//European Conference on Computer Vision.Cham:Springer,2018:3-19.
[7]侯金秀,李然,邓红霞,等. 融合通道信息注意力网络的叶片病害识别[J]. 计算机工程与应用,2020,56(23):124-129.
[8]张宁,吴华瑞,韩笑,等. 基于多尺度和注意力机制的番茄病害识别方法[J]. 浙江农业学报,2021,33(7):1329-1338.
[9]Fang P F,Zhou J M,Roy S,et al. Bilinear attention networks for person retrieval[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV).27 October-2 November 2019,Seoul,Korea (South).IEEE,2020:8029-8038.
[10]贾兆红,张袁源,王海涛,等. 基于Res2Net和双线性注意力的番茄病害时期识别方法[J]. 农业机械学报,2022,53(7):259-266.
[11]荆伟斌,胡海棠,程成,等. 基于深度学习的地面苹果识别与计数[J]. 江苏农业科学,2020,48(5):210-219.
[12]冀常鹏,陈浩楠,代巍. 基于GSNet的番茄叶面病害识别研究[J]. 沈阳农业大学学报,2021,52(6):751-757.
[13]李好,邱卫根,张立臣. 改进ShuffleNet V2的轻量级农作物病害识别方法[J]. 计算机工程与应用,2022,58(12):260-268.
[14]胡玲艳,周婷,刘艳,等. 基于轻量级网络自适应特征提取的番茄病害识别[J]. 江苏农业学报,2022,38(3):696-705.
[15]王东方,汪军. 基于迁移学习和残差网络的农作物病害分类[J]. 农业工程学报,2021,37(4):199-207.
[16]黎振,陆玲,熊方康. 基于k-means分割和迁移学习的番茄病理识别[J]. 江苏农业科学,2021,49(12):156-161.
[17]He K,Zhang X Y,Ren S Q,et al. Deep residual learning for image recognition[C]//2016 IEEE conference on computer vision and pattern recognition.27-30 June 2016,Las Vegas,NV,USA. IEEE 2016:770-778.
[18]Yan B,Fan P,Lei X Y,et al. A real-time apple targets detection method for picking robot based on improved YOLO v5[J]. Remote Sensing,2021,13(9):1619.
[19]Lin T Y,Dollár P,Girshick R,et al. Feature pyramid networks for object detection[C]//2017 IEEE conference on computer vision and pattern recognition.21-26 July 2017,Honolulu,HI,USA.IEEE 2017:2117-2125.
[1]严希,田山君,裴芸,等.几种中药提取液对番茄病害病原真菌的抑制效果[J].江苏农业科学,2017,45(20):129.
Yan Xi,et al.Inhibitory effects of different Chinese herbs extracts against pathogenic fungi from tomato disease[J].Jiangsu Agricultural Sciences,2017,45(22):129.
[2]阎园园,陈华,姜波.基于群智能算法分类模型的番茄病害识别[J].江苏农业科学,2020,48(1):219.
Yan Yuanyuan,et al.Study on classification algorithm of swarm intelligence algorithm in tomato disease identification[J].Jiangsu Agricultural Sciences,2020,48(22):219.
[3]罗巍,陈曙东,王福涛,等.基于深度学习的大型食草动物种群监测方法[J].江苏农业科学,2020,48(20):247.
Luo Wei,et al.Monitoring method of large herbivore population based on deep learning[J].Jiangsu Agricultural Sciences,2020,48(22):247.
[4]陈恩会,褚姝频,王炜,等.基于RetinaNet模型的梨小食心虫智能识别计数方法[J].江苏农业科学,2021,49(24):205.
Chen Enhui,et al.Intelligent recognition and counting method of Grapholitha molesta based on RetinaNet model[J].Jiangsu Agricultural Sciences,2021,49(22):205.
[5]陶雪阳,施振旦,郭彬彬,等.基于RFID与目标检测的种鹅个体产蛋信息监测方法[J].江苏农业科学,2023,51(5):200.
Tao Xueyang,et al.Monitoring method of individual egg-laying information of breeding geese based on RFID and object detection[J].Jiangsu Agricultural Sciences,2023,51(22):200.
[6]严陈慧子,田芳明,谭峰,等.基于改进YOLOv4的水稻病害快速检测方法[J].江苏农业科学,2023,51(6):187.
Yanchen Huizi,et al.Rapid detection method of rice diseases based on improved YOLOv4[J].Jiangsu Agricultural Sciences,2023,51(22):187.
[7]周绍发,肖小玲,刘忠意,等.改进的基于YOLOv5s苹果树叶病害检测[J].江苏农业科学,2023,51(13):212.
Zhou Shaofa,et al.Improved apple leaf disease detection based on YOLOv5s[J].Jiangsu Agricultural Sciences,2023,51(22):212.
[8]姜国权,杨正元,霍占强,等.基于改进YOLOv5网络的疏果前苹果检测方法[J].江苏农业科学,2023,51(14):205.
Jiang Guoquan,et al.Apple detection method before thinning fruit based on improved YOLOv5 model[J].Jiangsu Agricultural Sciences,2023,51(22):205.
[9]王圆圆,林建,王姗.基于YOLOv4-tiny模型的水稻早期病害识别方法[J].江苏农业科学,2023,51(16):147.
Wang Yuanyuan,et al.An early rice disease recognition method based on YOLOv4-tiny model[J].Jiangsu Agricultural Sciences,2023,51(22):147.
[10]施杰,林双双,罗建刚,等.基于YOLO v5s改进模型的玉米作物病虫害检测方法[J].江苏农业科学,2023,51(24):175.
Shi Jie,et al.Study on a detection method for crop diseases and insect pests based on YOLO v5s improved model[J].Jiangsu Agricultural Sciences,2023,51(22):175.