|本期目录/Table of Contents|

[1]郭延轲,赵长盛,刘伟,等.硝化/脲酶抑制剂和生物炭对设施农业土壤微生物及碳氮循环影响的研究进展[J].江苏农业科学,2024,52(9):1-11.
 Guo Yanke,et al.Research progress on influences of nitrification/urease inhibitor and biochar on soil microorganisms and carbon nitrogen cycle in protected agriculture[J].Jiangsu Agricultural Sciences,2024,52(9):1-11.
点击复制

硝化/脲酶抑制剂和生物炭对设施农业土壤微生物及碳氮循环影响的研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第9期
页码:
1-11
栏目:
专论与综述
出版日期:
2024-05-05

文章信息/Info

Title:
Research progress on influences of nitrification/urease inhibitor and biochar on soil microorganisms and carbon nitrogen cycle in protected agriculture
作者:
郭延轲赵长盛刘伟高新国李鲁震刘绪振董亚男
齐鲁工业大学(山东省科学院)山东省分析测试中心,山东济南 250014
Author(s):
Guo Yankeet al
关键词:
微生物碳氮排放硝化抑制剂脲酶抑制剂生物炭设施土壤
Keywords:
-
分类号:
S153.6+1;S154.3
DOI:
-
文献标志码:
A
摘要:
在我国设施农业生产快速发展的形势下,肥料的高投入量和低利用率的问题亟待解决。氮肥以硝态氮淋溶、温室气体排放的方式释放到自然环境中,在影响土壤微生物环境和碳氮循环过程的同时,加剧生态污染。针对氮肥高投入量带来的设施农业土壤养分流失问题,了解硝化/脲酶抑制剂和生物炭对设施土壤微生物及碳氮循环的影响机制,对维持微生物群落动态平衡、温室气体减排、提高设施农业生产力具有重要指导意义。本文综述硝化/脲酶抑制剂、生物炭影响土壤养分循环的作用机制,对多种抑制剂的现存优缺点和生物炭特性进行系统分析,总结三者近年来在设施农业中的研究应用进展,包括硝化/脲酶抑制剂和生物炭的单独施用与联合施用对微生物活性、温室气体排放、土壤质量、作物产量的影响,探究3种物质在田间的最佳施用方式及施用量。考虑到硝化/脲酶抑制剂和生物炭在现阶段的应用仍存在局限性,本文在讨论新型硝化/脲酶抑制剂发展现状的同时,对3种物质未来发展趋势和使用方法进行展望,以期为硝化抑制剂、脲酶抑制剂、生物炭在设施农业中的合理应用提供科学依据。
Abstract:
-

参考文献/References:

[1]陆文蔚,徐逍瑶,张丽雯. 植物促生菌对设施土壤氮循环细菌群落及小白菜生长的影响[J]. 上海农业学报,2023,39(1):1-8.
[2]田恬,田永强,高丽红. 设施菜田土壤质量研究进展[J]. 中国蔬菜,2021(10):35-44.
[3]国家统计局. 中国统计年鉴[M]. 北京:中国统计出版社,2016.
[4]佘映军,李平,白芳芳,等. 地下水埋深与施氮水平对夏玉米生长及硝态氮量的影响[J]. 灌溉排水学报,2021,40(4):22-28.
[5]Kappler A,Bryce C,Mansor M,et al. An evolving view on biogeochemical cycling of iron[J]. Nature Reviews Microbiology,2021,19:360-374.
[6]Suseela V,Conant R T,Wallenstein M D,et al. Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment[J]. Global Change Biology,2012,18(1):336-348.
[7]Sun J T,Pan L L,Zhan Y,et al. Contamination of phthalate esters,organochlorine pesticides and polybrominated diphenyl ethers in agricultural soils from the Yangtze River Delta of China[J]. Science of the Total Environment,2016,544:670-676.
[8]Zeng G C,Yu K,Li J Y,et al. Heavy metal accumulation and release risks in sediments from groundwater–river water interaction zones in a contaminated river under restoration[J]. ACS Earth and Space Chemistry,2020,4(12):2391-2402.
[9]Yang Y Y,Liu L,Zhang F,et al. Enhanced nitrous oxide emissions caused by atmospheric nitrogen deposition in agroecosystems over China[J]. Environmental Science and Pollution Research,2021,28(12):15350-15360.
[10]Zhao Z,Cao L K,Deng J,et al. Modeling CH4 and N2O emission patterns and mitigation potential from paddy fields in Shanghai,China with the DNDC model[J]. Agricultural Systems,2020,178:102743.
[11]Khan S A,Mulvaney R L,Ellsworth T R,et al. The myth of nitrogen fertilization for soil carbon sequestration[J]. Journal of Environmental Quality,2007,36(6):1821-1832.
[12]Wu H B,Guo Z T,Gao Q,et al. Distribution of soil inorganic carbon storage and its changes due to agricultural land use activity in China[J]. Agriculture,Ecosystems and Environment,2009,129(4):413-421.
[13]倪玉雪,赵梦强,周晓丽,等. 硝化抑制剂对设施菜田土壤N2O和CO2排放及蔬菜产量品质的影响[J]. 福建农业学报,2022,37(3):381-389.
[14]张功臣,王波,秦玉红,等. 生物炭在设施蔬菜生产中的应用研究进展[J]. 中国蔬菜,2021(6):20-26.
[15]Pinton R,Tomasi N,Zanin L. Molecular and physiological interactions of urea and nitrate uptake in plants[J]. Plant Signaling & Behavior,2016,11(1):e1076603.
[16]Galembeck F,Galembeck A,Santos L. NPK:essentials for sustainability[J]. Química Nova,2019,42(10):1199-1207.
[17]Wu L H,Li H,Luo Y M,et al. Nutrients can enhance phytoremediation of copper-polluted soil by Indian mustard[J]. Environmental Geochemistry and Health,2004,26(2/3):331-335.
[18]van Wesenbeeck C F A,Keyzer M A,van Veen W C M,et al. Can Chinas overuse of fertilizer be reduced without threatening food security and farm incomes?[J]. Agricultural Systems,2021,190:103093.
[19]Song X Z,Zhao C X,Wang X L,et al. Study of nitrate leaching and nitrogen fate under intensive vegetable production pattern in Northern China[J]. Comptes Rendus Biologies,2009,332(4):385-392.
[20]Ti C P,Luo Y X,Yan X Y. Characteristics of nitrogen balance in open-air and greenhouse vegetable cropping systems of China[J]. Environmental Science and Pollution Research International,2015,22(23):18508-18518.
[21]Guo R Y,Nendel C,Rahn C,et al. Tracking nitrogen losses in a greenhouse crop rotation experiment in North China using the EU-Rotate_N simulation model[J]. Environmental Pollution,2010,158(6):2218-2229.
[22]Bouraoui F,Grizzetti B. Long term change of nutrient concentrations of rivers discharging in European seas[J]. Science of the Total Environment,2011,409(23):4899-4916.
[23]Keshavarz A R,Lin R,Mohammed Y A,et al. Agronomic effects of urease and nitrification inhibitors on ammonia volatilization and nitrogen utilization in a dryland farming system:field and laboratory investigation[J]. Journal of Cleaner Production,2018,172:4130-4139.
[24]Garbeva P,van Veen J A,van Elsas J D. Microbial diversity in soil:selection microbial populations by plant and soil type and implications for disease suppressiveness[J]. Annual Review of Phytopathology,2004,42:243-270.
[25]She S Y,Niu J J,Zhang C,et al. Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system[J]. Archives of Microbiology,2017,199(2):267-275.
[26]卞碧云. 氮肥用量对设施栽培蔬菜土壤氨氧化微生物及氨氧化作用的影响[D]. 南京:南京师范大学,2013:32-42.
[27]王静,王磊,刘耀斌,等. 长期施氮肥对黄棕壤微生物生物性状的影响及其调控因素[J]. 中国生态农业学报(中英文),2021,29(5):833-843.
[28]Liu C J,Gong X W,Dang K,et al. Linkages between nutrient ratio and the microbial community in rhizosphere soil following fertilizer management[J]. Environmental Research,2020,184:109261.
[29]许欣,陈晨,熊正琴. 生物炭与氮肥对稻田甲烷产生与氧化菌数量和潜在活性的影响[J]. 土壤学报,2016,53(6):1517-1527.
[30]Kim D G,Hernandez-Ramirez G,Giltrap D. Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input:a meta-analysis[J]. Agriculture,Ecosystems and Environment,2013,168:53-65.
[31]何闪闪,王雷,李阿南,等. 设施菜地N2O释放特征及其土壤环境影响因素[J]. 能源环境保护,2015,29(6):40-43.
[32]Ma Y C,Sun L Y,Zhang X X,et al. Mitigation of nitrous oxide emissions from paddy soil under conventional and no-till practices using nitrification inhibitors during the winter wheat-growing season[J]. Biology and Fertility of Soils,2013,49(6):627-635.
[33]孙爱文,石元亮,张德生,等. 硝化/脲酶抑制剂在农业中的应用[J]. 土壤通报,2004,35(3):357-361.
[34]俞巧钢,殷建祯,马军伟,等. 硝化抑制剂DMPP应用研究进展及其影响因素[J]. 农业环境科学学报,2014,33(6):1057-1066.
[35]张芳,屈素斋. 硝化抑制剂和脲酶抑制剂在高温堆肥中的应用研究进展[J]. 磷肥与复肥,2022,37(6):14-17,30.
[36]张忠庆,高强. 硝化抑制剂2-氯-6-三氯甲基吡啶在农业中应用研究进展及其影响因素[J]. 中国土壤与肥料,2022(4):249-258.
[37]Di H J,Cameron K C. Ammonia oxidisers and their inhibition to reduce nitrogen losses in grazed grassland:a review[J]. Journal of the Royal Society of New Zealand,2018,48(2/3):127-142.
[38]张文学. 生化抑制剂对稻田氮素转化的影响及机理[D]. 北京:中国农业科学院,2014:11-12.
[39]Sun L,Lu Y F,Yu F W,et al. Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency[J]. New Phytologist,2016,212(3):646-656.
[40]陆玉芳,施卫明. 生物硝化抑制剂的研究进展及其农业应用前景[J]. 土壤学报,2021,58(3):545-557.
[41]刘灿玉,樊继德,陆信娟,等. 添加NBPT下氮肥减施对大蒜生长、产量及品质的影响[J]. 山东农业大学学报(自然科学版),2020,51(3):398-402,437.
[42]Rawluk C D L,Grant C A,Racz G J. Ammonia volatilization from soils fertilized with urea and varying rates of urease inhibitor NBPT[J]. Canadian Journal of Soil Science,2001,81(2):239-246.
[43]焦卫平,周鹏程,刘晓波,等. 氮肥抑制剂在肥料中的应用[J]. 磷肥与复肥,2022,37(9):22-25.
[44]黄兆玮,董磊,王趁义,等. 新型脲酶抑制剂对土壤脲酶活性和土壤微生物量的影响[J]. 中国水土保持科学(中英文),2021,19(5):99-105.
[45]Duff A M,Forrestal P,Ikoyi I,et al. Assessing the long-term impact of urease and nitrification inhibitor use on microbial community composition,diversity and function in grassland soil[J]. Soil Biology and Biochemistry,2022,170:108709.
[46]Li H,Liang X Q,Chen Y X,et al. Effect of nitrification inhibitor DMPP on nitrogen leaching,nitrifying organisms,and enzyme activities in a rice-oilseed rape cropping system[J]. Journal of Environmental Sciences,2008,20(2):149-155.
[47]王凌,张国印,刘孟朝,等. 硝化抑制剂和肥料减施对减少设施菜田氮源气体排放及与微生物功能基因的互作[J]. 华北农学报,2021,36(2):196-203.
[48]Zhang M,Fan C H,Li Q L,et al. A 2-yr field assessment of the effects of chemical and biological nitrification inhibitors on nitrous oxide emissions and nitrogen use efficiency in an intensively managed vegetable cropping system[J]. Agriculture,Ecosystems & Environment,2015,201:43-50.
[49]李宝石,刘文科,王奇,等. 根区施用硝化抑制剂DMPP对不同栽培方式下黄瓜产量及根区温室气体排放的影响[J]. 中国农业科技导报,2021,23(9):184-192.
[50]Weiske A,Benckiser G,Herbert T,et al. Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions,carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments[J]. Biology and Fertility of Soils,2001,34(2):109-117.
[51]Behera S N,Sharma M,Aneja V P,et al. Ammonia in the atmosphere:a review on emission sources,atmospheric chemistry and deposition on terrestrial bodies[J]. Environmental Science and Pollution Research,2013,20(11):8092-8131.
[52]Asing J,Saggar S,Singh J,et al. Assessment of nitrogen losses from urea and an organic manure with and without nitrification inhibitor,dicyandiamide,applied to lettuce under glasshouse conditions[J]. Soil Research,2008,46(7):535.
[53]许纪元,闵炬,施卫明. 应用 15N标记尿素研究硝化抑制剂对设施番茄氮素去向的影响[J]. 核农学报,2020,34(12):2793-2799.
[54]张昊青,赵学强,张玲玉,等. 石灰和双氰胺对红壤酸化和硝化作用的影响及其机制[J]. 土壤学报,2021,58(1):169-179.
[55]乔国庆,刘涛,张瑞喜,等. 硝化抑制剂对次生盐渍化农田棉花抗盐性及产量效应影响的研究[J]. 新疆农业科技,2014(2):23-24.
[56]黄东风,李卫华,邱孝煊. 硝化抑制剂对小白菜产量、硝酸盐含量及营养累积的影响[J]. 江苏农业学报,2009,25(4):871-875.
[57]Ren B Z,Zhang J W,Dong S T,et al. Nitrapyrin improves grain yield and nitrogen use efficiency of summer maize waterlogged in the field[J]. Agronomy Journal,2017,109(1):185-192.
[58]Frye W W,Graetz D A,Locascio S J,et al. Dicyandiamide as a nitrification inhibitor in crop production in the Southeastern USA[J]. Communications in Soil Science and Plant Analysis,1989,20(19/20):1969-1999.
[59]Singh J,Saggar S,Giltrap D L,et al. Decomposition of dicyandiamide (DCD) in three contrasting soils and its effect on nitrous oxide emission,soil respiratory activity,and microbial biomass-an incubation study[J]. Australian Journal of Soil Research,2008,46(7):517-525.
[60]Abalos D,Jeffery S,Sanz-Cobena A,et al. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency[J]. Agriculture,Ecosystems and Environment,2014,189:136-144.
[61]Woodward E E,Hladik M L,Kolpin D W. Nitrapyrin in streams:the first study documenting off-field transport of a nitrogen stabilizer compound[J]. Environmental Science & Technology Letters,2016,3(11):387-392.
[62]Munro P E. Inhibition of nitrifiers by grass root extracts[J]. Journal of Applied Ecology,1966,3(2):231.
[63]Subbarao G V,Ishikawa T,Ito O,et al. A bioluminescence assay to detect nitrification inhibitors released from plant roots:a case study with Brachiaria humidicola[J]. Plant and Soil,2006,288(1):101-112.
[64]Bending G D,Lincoln S D. Inhibition of soil nitrifying bacteria communities and their activities by glucosinolate hydrolysis products[J]. Soil Biology and Biochemistry,2000,32(8/9):1261-1269.
[65]Lata J C,Guillaume K,Degrange V,et al. Relationships between root density of the African grass Hyparrhenia diplandra and nitrification at the decimetric scale:an inhibition-stimulation balance hypothesis[J]. Proc. R. Soc. Lond. B,2000,267(1443):595-600.
[66]Sahrawat K L. Comparison of karanjin with other nitrification inhibitors for retardation of nitrification of urea N in soil[J]. Plant and Soil,1981,59(3):495-498.
[67]Zaman M,Nguyen M L,Blennerhassett J D,et al. Reducing NH3,N2O and N losses from a pasture soil with urease or nitrification inhibitors and elemental S-amended nitrogenous fertilizers[J]. Biology and Fertility of Soils,2008,44(5):693-705.
[68]Wang D Y,Guo L P,Zheng L,et al. Effects of nitrogen fertilizer and water management practices on nitrogen leaching from a typical open field used for vegetable planting in Northern China[J]. Agricultural Water Management,2019,213(4):913-921.
[69]Manunza B,Deiana S,Pintore M,et al. The binding mechanism of urea,hydroxamic acid and N-(N-butyl)-phosphoric triamide to the urease active site. A comparative molecular dynamics study[J]. Soil Biology and Biochemistry,1999,31(5):789-796.
[70]Fu Q L,Abadie M,Blaud A,et al. Effects of urease and nitrification inhibitors on soil N,nitrifier abundance and activity in a sandy loam soil[J]. Biology and Fertility of Soils,2020,56(2):185-194.
[71]Xi R J,Long X E,Huang S,et al. pH rather than nitrification and urease inhibitors determines the community of ammonia oxidizers in a vegetable soil[J]. AMB Express,2017,7(1):129.
[72]Li W Y,Xiao Q,Hu C S,et al. A comparison of the efficiency of different urease inhibitors and their effects on soil prokaryotic community in a short-term incubation experiment[J]. Geoderma,2019,354:113877.
[73]张文学,王少先,夏文建,等. 脲酶抑制剂与硝化抑制剂对稻田土壤硝化、反硝化功能菌的影响[J]. 植物营养与肥料学报,2019,25(6):897-909.
[74]Castellano-Hinojosa A,González-López J,Vallejo A,et al. Effect of urease and nitrification inhibitors on ammonia volatilization and abundance of N-cycling genes in an agricultural soil[J]. Journal of Plant Nutrition and Soil Science,2020,183(1):99-109.
[75]杨梦远. 不同添加剂对设施菜地N2O和NH3排放强度的影响[D]. 南京:南京信息工程大学,2021:31-38.
[76]Cantarella H,Otto R,Soares J R,et al. Agronomic efficiency of NBPT as a urease inhibitor:a review[J]. Journal of Advanced Research,2018,13:19-27.
[77]串丽敏,赵同科. 脲酶抑制剂NBPT对油菜生长及品质的影响[J]. 水土保持学报,2012,26(5):268-271.
[78]Fu J J,Wang C Y,Chen X X,et al. Classification research and types of slow controlled release fertilizers (SRFs) used:a review[J]. Communications in Soil Science and Plant Analysis,2018,49(17):2219-2230.
[79]Chen X X,Wang C Y,Fu J J,et al. Synthesis,inhibitory activity and inhibitory mechanism studies of Schiff base Cu(Ⅱ) complex as the fourth type urease inhibitors[J]. Inorganic Chemistry Communications,2019,99:70-76.
[80]陈仙仙,王趁义,黄兆玮,等. 第四类配合物型脲酶抑制剂对油菜生长及土壤氮素转化的影响[J]. 水土保持学报,2019,33(4):180-186.
[81]Yang W,Feng Q Q,Peng Z Y,et al. An overview on the synthetic urease inhibitors with structure-activity relationship and molecular docking[J]. European Journal of Medicinal Chemistry,2022,234:114273.
[82]Chen W F,Meng J,Han X R,et al. Past,present,and future of biochar[J]. Biochar,2019,1:75-87.
[83]Mukherjee A,Zimmerman A,Harris W. Surface chemistry variations among a series of laboratory-produced biochars[J]. Geoderma,2011,163(3/4):247-255.
[84]Keiluweit M,Nico P S,Johnson M G,et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology,2010,44(4):1247-1253.
[85]刘术新,李汉美,丁枫华. 生物炭对土壤环境质量的影响研究进展[J]. 甘肃农业科技,2020(2/3):84-91.
[86]韦金菊,秦国兵,张庚金,等. 不同粒径生物炭对土壤磷吸附-解吸特性的影响[J]. 应用生态学报,2023,34(3):708-716.
[87]Lu Y,Rao S,Huang F,et al. Effects of biochar amendment on tomato bacterial wilt resistance and soil microbial amount and activity[J]. International Journal of Agronomy,2016,2016:1-10.
[88]王先芳. 花生壳生物炭对设施菜地土壤硝化作用的影响及其微生物学机制[D]. 哈尔滨:东北农业大学,2020:24-28.
[89]刘钰莹,张妍,汪哲远,等. 硝化抑制剂与生物炭配施对水稻土氮素转化及氮肥利用率的影响[J]. 浙江大学学报(农业与生命科学版),2021,47(2):223-232.
[90]陶甄,李中阳,李松旌,等. 硝化抑制剂、脲酶抑制剂与生物炭复配对土壤温室气体排放的影响[J]. 农业环境科学学报,2022,41(6):1368-1379.
[91]黄佳佳,何莉莉,刘玉学,等. 生物炭配施硝化/脲酶抑制剂对亚热带水稻土活性氮气体排放的影响[J]. 应用生态学报,2022,33(4):1027-1036.
[92]Huang M Y,Zhang Z Y,Zhai Y M,et al. Effect of straw biochar on soil properties and wheat production under saline water irrigation[J]. Agronomy,2019,9(8):457.
[93]Wang D Y,Fonte S J,Parikh S J,et al. Biochar additions can enhance soil structure and the physical stabilization of C in aggregates[J]. Geoderma,2017,303:110-117.
[94]Chen Q H,Feng Y,Zhang Y P,et al. Short-term responses of nitrogen mineralization and microbial community to moisture regimes in greenhouse vegetable soils[J]. Pedosphere,2012,22(2):263-272.
[95]施振香. 上海城郊土壤硝化、反硝化作用及其影响因素研究[D]. 上海:上海师范大学,2010:48-57.
[96]王雪玉,刘金泉,胡云,等. 生物炭对设施连作土壤真菌群落结构与多样性的影响[J]. 农业机械学报,2022,53(7):347-353.
[97]Wang X F,Li J,Li G,et al. Biochar application affects Nitrobacter rather than Nitrospira in plastic greenhouse vegetable soil[J]. Applied Soil Ecology,2022,175:104449.
[98]王耀,张蕾,焦晓光,等. 添加生物炭对设施菜田土壤氮迁移的影响[J]. 中国农学通报,2020,36(16):91-95.
[99]Wang J Y,Xiong Z Q,Kuzyakov Y. Biochar stability in soil:meta-analysis of decomposition and priming effects[J]. GCB Bioenergy,2016,8(3):512-523.
[100]She D L,Sun X Q,Gamareldawla A H D,et al. Benefits of soil biochar amendments to tomato growth under saline water irrigation[J]. Scientific Reports,2018,8:14743.
[101]农明英,张乃明,史静,等. 外源有机物料对次生盐渍化大棚土壤的改良效果[J]. 中国土壤与肥料,2013(6):6-10.
[102]孙向春,冯涛,殷晓燕,等. 生物炭对土壤理化性质及玉米产量的影响[J]. 陕西农业科学,2022,68(9):5-9.
[103]Liu Q,Zhang Y H,Liu B J,et al. How does biochar influence soil N cycle?A meta-analysis[J]. Plant and Soil,2018,426(1):211-225.
[104]吴发明,刘峙嵘. 向日葵对铀污染土壤修复的研究进展[J]. 江苏农业科学,2022,50(9):6-16.
[105]Zaman M,Nguyen M L. How application timings of urease and nitrification inhibitors affect N losses from urine patches in pastoral system[J]. Agriculture,Ecosystems & Environment,2012,156:37-48.
[106]Zhang L,Wu Z,Jiang Y,et al. Fate of applied urea 15N in a soil-maize system as affected by urease inhibitor and nitrification inhibitor[J]. Plant,Soil and Environment,2010,56(1):8-15.
[107]曾科,王书伟,朱文彬,等. 施氮方式与添加脲酶/硝化抑制剂对稻季NH3挥发和N2O排放的影响[J]. 植物营养与肥料学报,2023,29(2):220-231.
[108]Dong D,Kou Y P,Yang W C,et al. Effects of urease and nitrification inhibitors on nitrous oxide emissions and nitrifying/denitrifying microbial communities in a rainfed maize soil:a 6-year field observation[J]. Soil and Tillage Research,2018,180:82-90.
[109]Coelho M A,Fusconi R,Pinheiro L,et al. The combination of compost or biochar with urea and NBPT can improve nitrogen-use efficiency in maize[J]. Anais da Academia Brasileira de Ciências,2018,90(2):1695-1703.
[110]Kong X W,Eriksen J,Petersen S O. Evaluation of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) for mitigating soil N2O emissions after grassland cultivation[J]. Agriculture,Ecosystems & Environment,2018,259:174-183.
[111]Dawar K,Fahad S,Jahangir M M R,et al. Biochar and urease inhibitor mitigate NH3 and N2O emissions and improve wheat yield in a urea fertilized alkaline soil[J]. Scientific Reports,2021,11:17413.
[112]He T H,Yuan J J,Luo J F,et al. Combined application of biochar with urease and nitrification inhibitors have synergistic effects on mitigating CH4 emissions in rice field:a three-year study[J]. Science of the Total Environment,2020,743:140500.
[113]Lan T,Huang Y X,Song X,et al. Biological nitrification inhibitor co-application with urease inhibitor or biochar yield different synergistic interaction effects on NH3 volatilization,N leaching,and N use efficiency in a calcareous soil under rice cropping[J]. Environmental Pollution,2022,293:118499.

相似文献/References:

[1]李媛媛,张怡康.徐州采煤塌陷区复垦土壤的细菌群落多样性[J].江苏农业科学,2014,42(09):312.
 Li Yuanyuan,et al.Bacterial community diversity of reclaimed soil in coal-mining subsidence area of Xuzhou[J].Jiangsu Agricultural Sciences,2014,42(9):312.
[2]宋景华,李谷,张世羊,等.循环水养殖池塘微生物群落的碳源代谢特性和功能多样性[J].江苏农业科学,2013,41(09):305.
 Song Jinghua,et al.Carbon metabolic properties and functional diversity of microbial communities in recirculating aquaculture ponds[J].Jiangsu Agricultural Sciences,2013,41(9):305.
[3]汤鸣强,吴凤林,姚源琼.喷施宝叶面肥对农药胁迫下土壤中常见微生物生长的影响[J].江苏农业科学,2013,41(11):361.
 Tang Mingqiang,et al.Effect of foliar fertilizer Penshibao on growth of common microorganisms in soils under pesticides stress[J].Jiangsu Agricultural Sciences,2013,41(9):361.
[4]高岳.应用宏基因组技术从微生物中获得活性物质的研究进展[J].江苏农业科学,2014,42(01):5.
 Gao Yue.Research progress of application of metagenomic approaches in discovery of active material[J].Jiangsu Agricultural Sciences,2014,42(9):5.
[5]杨志红,田前进,吴诗谣,等.芦竹对富营养化水体中磷及微生物的影响[J].江苏农业科学,2014,42(01):297.
 Yang Zhihong,et al.Effects of Arundo donax L. on phosphorus pollution and microorganisms in eutrophic water[J].Jiangsu Agricultural Sciences,2014,42(9):297.
[6]黄宜,刘振民,莫蓓红,等.干酪中微生物的研究进展[J].江苏农业科学,2016,44(05):359.
 Huang Yi,et al.Research progress on cheese microbiology[J].Jiangsu Agricultural Sciences,2016,44(9):359.
[7]侯少锋,李荣玉,尹显慧,等.精异丙甲草胺胁迫下烟草根际土壤微生物的动态响应及其降解[J].江苏农业科学,2016,44(06):493.
 Hou Shaofeng,et al.Dynamic responses and degradation of microorganisms in rhizospher soil under S-metolachlor stress[J].Jiangsu Agricultural Sciences,2016,44(9):493.
[8]李劭彤,李朝阳,李巧玲,等.甲氰菊酯微生物降解的研究进展[J].江苏农业科学,2015,43(11):17.
 Li Shaotong,et al.Pesearch progress on microbial degradation of fenpropathrin[J].Jiangsu Agricultural Sciences,2015,43(9):17.
[9]谢利,王燕芳,马超,等.棉花-孜然间作模式对土壤微生物数量及酶活性的影响[J].江苏农业科学,2015,43(10):103.
 Xie Li,et al.Effects of cotton and cumin intercropping pattern on soil microorganisms and enzyme activity[J].Jiangsu Agricultural Sciences,2015,43(9):103.
[10]李依韦,银 玲.黄瓜连作对土壤中微生物种群及酶活性的影响[J].江苏农业科学,2015,43(07):150.
 Li Yiwei,et al.Effect of successive cucumber cropping on microbial population and enzyme activity in soil[J].Jiangsu Agricultural Sciences,2015,43(9):150.

备注/Memo

备注/Memo:
收稿日期:2023-06-18
基金项目:国家自然科学基金(编号:41877041);山东省自然科学基金(编号:ZR2022MC204);齐鲁工业大学(山东省科学院)科教产融合创新试点工程项目(编号:2020KJC-ZD13);山东省科技型中小企业创新能力提升工程项目(编号:2022TSGC2199);枣庄市科技型中小企业创新能力提升工程项目(编号:2023TSGC15)。
作者简介:郭延轲(2000—),男,山东济宁人,硕士研究生,主要从事土壤碳氮循环研究。E-mail:13355167762@163.com。
通信作者:赵长盛,博士,副研究员,主要从事农业面源污染研究。E-mail:zhaochsh1980@163.com。
更新日期/Last Update: 2024-05-05