|本期目录/Table of Contents|

[1]汪胜,潘韬文,陈剑珠,等.生物炭和氮素互作对土壤化学特性、硅形态及水稻生长的影响[J].江苏农业科学,2024,52(9):151-159.
 Wang Sheng,et al.Effects of biochar and nitrogen interaction on soil chemical traits,silicon fractions and rice growth[J].Jiangsu Agricultural Sciences,2024,52(9):151-159.
点击复制

生物炭和氮素互作对土壤化学特性、硅形态及水稻生长的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第9期
页码:
151-159
栏目:
遗传育种与耕作栽培
出版日期:
2024-05-05

文章信息/Info

Title:
Effects of biochar and nitrogen interaction on soil chemical traits,silicon fractions and rice growth
作者:
汪胜潘韬文陈剑珠田纪辉蔡昆争
华南农业大学资源环境学院/农业农村部华南热带农业环境重点实验室/广东省生态循环农业重点实验室,广东广州 510642
Author(s):
Wang Shenget al
关键词:
水稻生物炭土壤肥力养分吸收
Keywords:
-
分类号:
S511.06
DOI:
-
文献标志码:
A
摘要:
为揭示生物炭和氮素互作在水稻生长和土壤改良方面的协同作用,以华航31、美香占2个水稻品种为材料,研究不同氮水平(0、0.1、0.2 g/kg)条件下施用2%生物炭对土壤的化学特性、硅形态转化和水稻植株生长的影响。结果表明,施用生物炭、氮均显著影响植株的干物质积累及叶片的光合作用。在同一氮水平下施加生物炭可显著提高水稻植株地上部生物量,其中0.2 g/kg氮水平配施生物炭(BN2处理)分别使华航31、美香占的地上部生物量增加54.39%、73.39%,分蘖期游离态硅含量分别达到151.3、152.7 mg/kg;而不同氮素水平配施生物炭对叶片的Fv/Fm无显著影响。不同氮水平施加生物炭,均显著提高土壤有机碳含量和土壤有效硅含量,且不同生育期和不同品种一致。此外,在水稻成熟期,不同氮水平配施生物炭显著增加土壤的pH值和植株茎叶硅的积累量。值得注意的是,在生物炭和氮素互作条件下,土壤全碳和有效硅含量呈显著正相关。综上所述,生物炭和氮素互作能改善土壤肥力,促进硅形态转化,促进水稻植株生长和养分吸收,提高有效硅含量,其中以0.2 g/kg 氮水平下施用生物炭效果最为显著。
Abstract:
-

参考文献/References:

[1]Flies E J,Brook B W,Blomqvist L,et al. Forecasting future global food demand:a systematic review and meta-analysis of model complexity[J]. Environment International,2018,120:93-103.
[2]孙兴荣,卞景阳,刘琳帅,等. 氮肥施用量对水稻产量及品质的影响[J]. 黑龙江农业科学,2019,11:48-51.
[3]潘韬文,陈俣,蔡昆争. 硅氮互作改善优质稻植株生理生态特性[J]. 热带作物学报,2020,41(4):694-700.
[4]巨晓棠,谷保静. 我国农田氮肥施用现状、问题及趋势[J]. 植物营养与肥料学报,2014,20(4):783-795.
[5]Yang S H,Chen X,Jiang Z W,et al. Effects of biochar application on soil organic carbon composition and enzyme activity in paddy soil under water-saving irrigation[J]. International Journal of Environmental Research and Public Health,2020,17(1):333.
[6]Huang M,Fan L,Chen J N,et al. Continuous applications of biochar to rice:effects on nitrogen uptake and utilization[J]. Scientific Reports,2018,8:11461.
[7]Yin X H,Chen J N,Cao F B,et al. Short-term application of biochar improves post-heading crop growth but reduces pre-heading biomass translocation in rice[J]. Plant Production Science,2020,23(4):522-528.
[8]Li Z M,Unzué-Belmonte D,Cornelis J T,et al. Effects of phytolithic rice-straw biochar,soil buffering capacity and pH on silicon bioavailability[J]. Plant and Soil,2019,438(1):187-203.
[9]Fan S X,Zuo J C,Dong H Y. Changes in soil properties and bacterial community composition with biochar amendment after six years[J]. Agronomy,2020,10(5):746.
[10]Zhu H,Wang Z X,Luo X M,et al. Effects of straw incorporation on Rhizoctonia solaniinoculum in paddy soil and rice sheath blight severity[J]. The Journal of Agricultural Science,2014,152(5):741-748.
[11]Liu Y,Li J,Jiao X Y,et al. Effects of biochar on water quality and rice productivity under straw returning condition in a rice-wheat rotation region[J]. The Science of the Total Environment,2022,819:152063.
[12]鲍士旦. 土壤农化分析[M]. 3版.北京:中国农业出版社,2000.
[13]戴伟民,张克勤,段彬伍,等. 测定水稻硅含量的一种简易方法[J]. 中国水稻科学,2005,19(5):460-462.
[14]Cui X Y,Mao P,Sun S,et al. Phytoremediation of cadmium contaminated soils by Amaranthus hypochondriacus L.:the effects of soil properties highlighting cation exchange capacity[J]. Chemosphere,2021,283:131067.
[15]Song Z L,Wang H L,Strong P J,et al. Increase of available soil silicon by Si-rich manure for sustainable rice production[J]. Agronomy for Sustainable Development,2014,34(4):813-819.
[16]Singh B P,Hatton B J,Singh B,et al. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils[J]. Journal of Environmental Quality,2010,39(4):1224-1235.
[17]de Sousa Lima J R,de Moraes Silva W,de Medeiros E V,et al. Effect of biochar on physicochemical properties of a sandy soil and maize growth in a greenhouse experiment[J]. Geoderma,2018,319:14-23.
[18]Li J W,Xie J B,Zhang Y,et al. Interactive effects of nitrogen and water addition on soil microbial resource limitation in a temperate desert shrubland[J]. Plant and Soil,2022,475(1):361-378.
[19]Xiao Q,Wang J,Liang D,et al. Effects of formulated fertilization on soil physical and chemical characteristics of early ripe peach orchard[J]. IOP Conference Series:Earth and Environmental Science,2019,295(2):012086.
[20]吴愉萍,王明湖,席杰君,等. 不同农业废弃物生物炭及施用量对土壤pH值和保水保氮能力的影响[J]. 中国土壤与肥料,2019(1):87-92.
[21]Oldfield E E,Wood S A,Bradford M A. Direct effects of soil organic matter on productivity mirror those observed with organic amendments[J]. Plant and Soil,2018,423(1):363-373.
[22]Glaser B,Lehmann J,Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review[J]. Biology and Fertility of Soils,2002,35(4):219-230.
[23]柳瑞,高阳,李恩琳,等. 减氮配施生物炭对水稻生长发育、干物质积累及产量的影响[J]. 生态环境学报,2020,29(5):926-932.
[24]Qiang M M,Gao J E,Han J Q. Conversion of slope cropland to terrace influences soil organic carbon and nitrogen stocks on the Chinese Loess Plateau[J]. Polish Journal of Environmental Studies,2020,30(1):315-325.
[25]Liang B Q,Lehmann J,Sohi S P,et al. Black carbon affects the cycling of non-black carbon in soil[J]. Organic Geochemistry,2010,41(2):206-213.
[26]刘学彤,郑春莲,曹薇,等. 长期定位施肥对土壤有机质、不同形态氮含量及作物产量的影响[J]. 作物杂志,2021(4):130-135.
[27]张祥,王典,姜存仓,等. 生物炭对我国南方红壤和黄棕壤理化性质的影响[J]. 中国生态农业学报,2013,21(8):979-984.
[28]Schaller J,Heimes R,Ma J F,et al. Silicon accumulation in rice plant aboveground biomass affects leaf carbon quality[J]. Plant and Soil,2019,444(1):399-407.
[29]Souri Z,Khanna K,Karimi N,et al. Silicon and plants:current knowledge and future prospects[J]. Journal of Plant Growth Regulation,2021,40(3):906-925.
[30]吕烈武,王朝弼,吴蔚东,等. 海南岛典型水稻土硅形态空间分布特征及其有效性的影响因素[J]. 广东农业科学,2020,47(3):81-89.
[31]Li Z M,Delvaux B,Yans J,et al. Phytolith-rich biochar increases cotton biomass and silicon-mineralomass in a highly weathered soil[J]. Journal of Plant Nutrition and Soil Science,2018,181(4):537-546.
[32]Liu H P,Zhang L Y,Han Z J,et al. The effects of leaching methods on the combustion characteristics of rice straw[J]. Biomass and Bioenergy,2013,49:22-27.
[33]Xiao X,Chen B L,Zhu L Z. Transformation,morphology,and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures[J]. Environmental Science & Technology,2014,48(6):3411-3419.
[34]Abbas T,Rizwan M,Ali S,et al. Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination[J]. Ecotoxicology and Environmental Safety,2017,140:37-47.
[35]Houben D,Sonnet P,Cornelis J T. Biochar from Miscanthus:a potential silicon fertilizer[J]. Plant and Soil,2014,374(1):871-882.
[36]Liu X Y,Li L Q,Bian R J,et al. Effect of biochar amendment on soil-silicon availability and rice uptake[J]. Journal of Plant Nutrition and Soil Science,2014,177(1):91-96.
[37]Laird D A,Fleming P,Davis D D,et al. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil[J]. Geoderma,2010,158(3/4):443-449.
[38]Song Z L,Liu C Q,Müller K,et al. Silicon regulation of soil organic carbon stabilization and its potential to mitigate climate change[J]. Earth-Science Reviews,2018,185:463-475.
[39]宁东峰,刘战东,肖俊夫,等. 水稻土施用钢渣硅钙肥对土壤硅素形态和水稻生长的影响[J]. 灌溉排水学报,2016,35(8):42-46.
[40]Gong H J,Zhu X Y,Chen K M,et al. Silicon alleviates oxidative damage of wheat plants in pots under drought[J]. Plant Science,2005,169(2):313-321.
[41]胡祖武,吴多基,吴建富,等. 富硅生物炭有效提高红壤性稻田土壤不同形态硅含量及水稻产量[J]. 植物营养与肥料学报,2022,28(8):1421-1429.
[42]Sela A,Piskurewicz U,Megies C,et al. Embryonic photosynthesis affects post-germination plant growth[J]. Plant Physiology,2020,182(4):2166-2181.
[43]陈盈,张满利,刘宪平,等. 生物炭对水稻齐穗期叶绿素荧光参数及产量构成的影响[J]. 作物杂志,2016(3):94-98.
[44]Kumar H,Ganesan S P,Sang H,et al. Exploring relations between plant photochemical quantum parameters and unsaturated soil water retention for biochars and pith amended soils[J]. The Science of the Total Environment,2022,804:150251.
[45]Shetty R,Prakash N B. Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity[J]. Scientific Reports,2020,10:12249.
[46]López-Pérez M C,Pérez-Labrada F,Ramírez-Pérez L J,et al. Dynamic modeling of silicon bioavailability,uptake,transport,and accumulation:applicability in improving the nutritional quality of tomato[J]. Frontiers in Plant Science,2018,9:647.
[47]Wei W L,Yang H Q,Fan M S,et al. Biochar effects on crop yields and nitrogen loss depending on fertilization[J]. The Science of the Total Environment,2020,702:134423.

相似文献/References:

[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统 作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量 及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
 Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(9):60.
[6]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
 Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(9):62.
[7]赵忠宝,朱清海.稻-蟹-鳅生态系统的能值分析[J].江苏农业科学,2013,41(05):349.
 Zhao Zhongbao,et al.Emergy analysis of paddy-crab-loach ecosystem[J].Jiangsu Agricultural Sciences,2013,41(9):349.
[8]杨红福,姚克兵,束兆林,等.甲氧基丙烯酸酯类杀菌剂对水稻恶苗病的田间药效[J].江苏农业科学,2014,42(12):166.
 Yang Hongfu,et al.Field efficacy of strobilurin fungicides against rice bakanae disease[J].Jiangsu Agricultural Sciences,2014,42(9):166.
[9]唐成,陈露,安敏敏,等.稻瘟病诱导水稻幼苗叶片氧化还原系统的特征谱变化[J].江苏农业科学,2014,42(12):141.
 Tang Cheng,et al.Characteristic spectral changes of redox homeostasis system in rice seedling leaves induced by rice blast[J].Jiangsu Agricultural Sciences,2014,42(9):141.
[10]万云龙.优质水稻—春甘蓝轮作高效栽培模式[J].江苏农业科学,2014,42(12):90.
 Wan Yunlong.Efficient cultivation mode of high quality rice-spring cabbage rotation[J].Jiangsu Agricultural Sciences,2014,42(9):90.
[11]周新伟,邱业先,沈明星,等.茶多酚与尿素配合施用对水稻产量及土壤氮含量的影响[J].江苏农业科学,2013,41(12):52.
 Zhou Xinwei,et al.Effect of tea polyphenols and urea combined application on rice yield and soil nitrogen contents[J].Jiangsu Agricultural Sciences,2013,41(9):52.
[12]李晓蕾,钱永德,黄成亮,等.苗期氮素用量对水稻秧苗素质的影响[J].江苏农业科学,2014,42(03):47.
 Li Xiaolei,et al.Effect of nitrogen levels on quality of rice seedlings at seeding stage[J].Jiangsu Agricultural Sciences,2014,42(9):47.
[13]殷春渊,王书玉,刘贺梅,等.优良食味粳稻丰产优质及氮高效协同的叶片光合生理[J].江苏农业科学,2023,51(17):91.
 Yin Chunyuan,et al.Leaf photosynthetic physiology of high yield,good quality and high nitrogen efficiency coordination of japonica rice with good taste [JY。]Yin Chunyuan,et al(91)[J].Jiangsu Agricultural Sciences,2023,51(9):91.

备注/Memo

备注/Memo:
收稿日期:2023-04-26
基金项目:国家自然科学基金(编号:31870420);广东省科技计划(编号:2121A0505030057)。
作者简介:汪胜(1997—),男,湖南益阳人,硕士研究生,研究方向为农业生态。E-mail:1476078243@qq.com。
通信作者:蔡昆争,博士,教授,主要从事农业生态研究。E-mail:kzcai@scau.edu.cn。
更新日期/Last Update: 2024-05-05