[1]张琨,袁利兵,彭志红,等. 马铃薯转基因工程研究现状[J]. 湖南农业科学,2011(5):6-8,11.
[2]谷悦. 马铃薯将成我国第四大主粮主粮化进程受关注[J]. 中国食品,2015(2):86-87.
[3]木泰华,陈井旺. 薯类加工与营养专题导读:中国薯类加工现状与展望[J]. 中国农业科学,2016,49(9):1744-1745.
[4]王芳. 马铃薯抗旱性评价相关研究进展[C]//马铃薯产业与现代可持续农业(2015).北京,2015:182-187.
[5]Souer E,van Houwelingen A,Kloos D,et al. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries[J]. Cell,1996,85(2):159-170.
[6]Aida M,Ishida T,Fukaki H,et al. Genes involved in organ separation in Arabidopsis:an analysis of the cup-shaped cotyledon mutant[J]. The Plant Cell,1997,9(6):841-857.
[7]Sperotto R A,Ricachenevsky F K,Duarte G L,et al. Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5,a new ABA-dependent transcription factor[J]. Planta,2009,230(5):985-1002.
[8]程永芳. HaNACl基因转化马铃薯研究[D]. 银川:宁夏大学,2016:76.
[9]Ooka H,Satoh K,Doi K,et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Research,2003,10(6):239-247.
[10]Ernst H A,Olsen A N,Larsen S,et al. Structure of the conserved domain of ANAC,a member of the NAC family of transcription factors[J]. EMBO Reports,2004,5(3):297-303.
[11]Olsen A N,Ernst H A,Leggio L L,et al. NAC transcription factors:structurally distinct,functionally diverse[J]. Trends in Plant Science,2005,10(2):79-87.
[12]Kikuchi K,Ueguchi-Tanaka M,Yoshida K T,et al. Molecular analysis of the NAC gene family in rice[J]. Molecular and General Genetics MGG,2000,262(6):1047-1051.
[13]Duval M,Hsieh T F,Kim S Y,et al. Molecular characterization of AtNAM:a member of the Arabidopsis NAC domain superfamily[J]. Plant Molecular Biology,2002,50(2):237-248.
[14]Kim Y S,Kim S G,Park J E,et al. A membrane-bound NAC transcription factor regulates cell division in Arabidopsis[J]. The Plant Cell,2006,18(11):3132-3144.
[15]梁文君,孙超,李鹏程,等. 作物根系发育相关基因研究进展及在马铃薯抗旱育种中的应用展望[J]. 植物生理学报,2020,56(4):613-624.
[16]Mao X G,Zhang H Y,Qian X Y,et al. TaNAC2,a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis[J]. Journal of Experimental Botany,2012,63(8):2933-2946.
[17]孙利军,李大勇,张慧娟,等. NAC转录因子在植物抗病和抗非生物胁迫反应中的作用[J]. 遗传,2012,34(8):993-1002.
[18]Hu H H,Dai M Q,Yao J L,et al. Overexpressing a NAM,ATAF,and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(35):12987-12992.
[19]Takasaki H,Maruyama K,Kidokoro S,et al. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice[J]. Molecular Genetics and Genomics,2010,284(3):173-183.
[20]Sakuraba Y,Piao W L,Lim J H,et al. Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle[J]. Plant and Cell Physiology,2015,56(12):2325-2339.
[21]Hong Y B,Zhang H J,Huang L,et al. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice[J]. Frontiers in Plant Science,2016,7:4.
[22]Guan H R,Liu X,Niu F,et al. OoNAC72,a NAC-type Oxytropis ochrocephala transcription factor,conferring enhanced drought and salt stress tolerance in Arabidopsis[J]. Frontiers in Plant Science,2019,10:890.
[23]Pang X Y,Xue M,Ren M Y,et al. Ammopiptanthus mongolicus stress-responsive NAC gene enhances the tolerance of transgenic Arabidopsis thaliana to drought and cold stresses[J]. Genetics and Molecular Biology,2019,42(3):624-634.
[24]Yong Y B,Zhang Y,Lyu Y M. A stress-responsive NAC transcription factor from tiger lily (LlNAC2) interacts with LlDREB1 and LlZHFD4 and enhances various abiotic stress tolerance in Arabidopsis[J]. International Journal of Molecular Sciences,2019,20(13):3225.
[25]Borgohain P,Saha B,Agrahari R,et al. SlNAC2 overexpression in Arabidopsis results in enhanced abiotic stress tolerance with alteration in glutathione metabolism[J]. Protoplasma,2019,256(4):1065-1077.
[26]He K,Zhao X,Chi X Y,et al. A novel Miscanthus NAC transcription factor MlNAC10 enhances drought and salinity tolerance in transgenic Arabidopsis[J]. Journal of Plant Physiology,2019,233:84-93.
[27]Yang X W,He K,Chi X Y,et al. Miscanthus NAC transcription factor MlNAC12 positively mediates abiotic stress tolerance in transgenic Arabidopsis[J]. Plant Science,2018,277:229-241.
[28]Cao H S,Wang L,Nawaz M A,et al. Ectopic expression of pumpkin NAC transcription factor CmNAC1 improves multiple abiotic stress tolerance in Arabidopsis[J]. Frontiers in Plant Science,2017,8:2052.
[29]Tran L S P,Nakashima K,Sakuma Y,et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter[J]. The Plant Cell,2004,16(9):2481-2498.
[30]Fujita M,Fujita Y,Maruyama K,et al. A dehydration-induced NAC protein,RD26,is involved in a novel ABA-dependent stress-signaling pathway[J]. The Plant Journal,2004,39(6):863-876.
[31]Tran L S P,Quach T N,Guttikonda S K,et al. Molecular characterization of stress-inducible GmNAC genes in soybean[J]. Molecular Genetics and Genomics,2009,281(6):647-664.
[32]Saad A S I,Li X,Li H P,et al. A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses[J]. Plant Science,2013,203/204:33-40.
[33]Zhu M K,Chen G P,Zhang J L,et al. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum)[J]. Plant Cell Reports,2014,33(11):1851-1863.
[34]Nuruzzaman M,Manimekalai R,Sharoni A M,et al. Genome-wide analysis of NAC transcription factor family in rice[J]. Gene,2010,465(1/2):30-44.
[35]Xue G P,Way H M,Richardson T,et al. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat[J]. Molecular Plant,2011,4(4):697-712.
[36]Grant E H,Fujino T,Beers E P,et al. Characterization of NAC domain transcription factors implicated in control of vascular cell differentiation in Arabidopsis and Populus[J]. Planta,2010,232(2):337-352.
[37]Puranik S,Sahu P P,Srivastava P S,et al. NAC proteins:regulation and role in stress tolerance[J]. Trends in Plant Science,2012,17(6):369-381.
[38]Le D T,Nishiyama R,Watanabe Y,et al. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress[J]. DNA research,2011,18(4):263-276.
[39]He Q,Liu Y H,Zhang M,et al. Genome-wide identification and expression analysis of the NAC transcription factor family in pineapple[J]. Tropical Plant Biology,2019,12(4):255-267.
[40]Zhang X M,Yu H J,Sun C,et al. Genome-wide characterization and expression profiling of the NAC genes under abiotic stresses in Cucumis sativus[J]. Plant Physiology and Biochemistry,2017,113:98-109.
[41]Liu X W,Wang T,Bartholomew E,et al. Comprehensive analysis of NAC transcription factors and their expression during fruit spine development in cucumber (Cucumis sativus L.)[J]. Horticulture Research,2018,5:31.
[42]Li F,Guo X H,Liu J X,et al. Genome-wide identification,characterization,and expression analysis of the NAC transcription factor in Chenopodium quinoa[J]. Genes,2019,10(7):500.
[43]Xu Q F,He Q,Li S,et al. Molecular characterization of StNAC2 in potato and its overexpression confers drought and salt tolerance[J]. Acta Physiologiae Plantarum,2014,36(7):1841-1851.
[44]张丽,程永芳,巩檑,等. 转化转录因子HaNAC1基因提高马铃薯的抗逆性[J]. 分子植物育种,2018,16(14):4623-4631.
[45]蒙露露,何冠谛,田维军,等. 马铃薯StNAC2基因的克隆及其在镉胁迫下的表达分析[J]. 分子植物育种,2020,18(22):7293-7300.
[46]巩檑,甘晓燕,张丽,等. 马铃薯StNAC72基因克隆及表达分析[J]. 分子植物育种,2016,14(10):2589-2595.
[47]张莉. 利用酵母双杂交技术筛选与马铃薯StNAC262互作的功能基因[D]. 兰州:甘肃农业大学,2018:43.
[48]刘小利. 耐辐射异常球菌亲水蛋白Dlp非生物胁迫抗性研究[D]. 绵阳:西南科技大学,2017:4.
[49]曲自成. 马铃薯转录因子NAC043的克隆及其功能分析[D]. 哈尔滨:东北农业大学,2021:20.
[50]王永鑫,刘志薇,吴致君,等. 茶树中2个NAC转录因子基因的克隆及温度胁迫的响应[J]. 西北植物学报,2015,35(11):2148-2156.
[51]于兴旺. 鹰嘴豆NAC转录因子CarNAC4、CarNAC5和CarNAC2参与逆境胁迫响应的功能分析[D]. 南京:南京农业大学,2014:109-110.
[52]王勇锋,杨翠玲,冷秋丽,等. 甘蓝型油菜BnNAC转录因子鉴定与非生物胁迫响应分析[J]. 中国油料作物学报,2020,42(4):545-553.
[53]何洁月. 面向蛋白质结构预测的计算生物学技术研究[D]. 南京:东南大学,2006:76.
[54]田再民,赵益,纪艺红,等. 马铃薯CDPK基因的克隆及生物信息学分析[J]. 分子植物育种,2022,20(5):1435-1442.
[55]唐宽刚,任美艳,张文君,等. 沙冬青AmNAC6基因的克隆与功能初步分析[J]. 植物科学学报,2018,36(5):705-712.
[56]Redillas M C F R,Strasser R J,Jeong J S,et al. The use of JIP test to evaluate drought-tolerance of transgenic rice overexpressing OsNAC10[J]. Plant Biotechnology Reports,2011,5(2):169-175.
[57]Jeong J S,Kim Y S,Baek K H,et al. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions[J]. Plant Physiology,2010,153(1):185-197.
[58]Hu H H,Dai M Q,Yao J L,et al. Overexpressing a NAM,ATAF,and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(35):12987-12992.
[59]卢敏,张登峰,石云素,等. 玉米胁迫诱导表达基因ZmSNAC1的功能分析[J]. 作物学报,2013,39(12):2177-2182.
[1]王朝海,陈春艳,顾尚敬,等.不同覆土高度对马铃薯产量及其构成的影响[J].江苏农业科学,2013,41(04):101.
[2]石虎,杨永智,周云,等.马铃薯新品种青薯9号高效再生体系的建立[J].江苏农业科学,2013,41(05):14.
Shi Hu,et al.Establishment of efficient regeneration system of new potato cultivar “Qingshu No.9”[J].Jiangsu Agricultural Sciences,2013,41(11):14.
[3]李珺,马力通.马铃薯淀粉体表达载体的构建及其转基因植物的培养[J].江苏农业科学,2013,41(08):22.
Li Jun,et al.Construction of potato amyloplast expression vector and breeding of its genetically modified plants[J].Jiangsu Agricultural Sciences,2013,41(11):22.
[4]陈春艳,王朝海,白永生,等.不同稀释倍数代森锰锌防治马铃薯晚疫病的药效试验[J].江苏农业科学,2013,41(05):106.
Chen Chunyan,et al.Control effect of different dilution multiple of mancozeb on potato late blight[J].Jiangsu Agricultural Sciences,2013,41(11):106.
[5]李葵花,高玉亮,吴京姬.转P5CS基因马铃薯“东农303”耐盐、抗旱性研究[J].江苏农业科学,2014,42(11):131.
Li Kuihua,et al().Study on salt resistance and drought resistance of P5CS transgenic potato cultivar “Dongnong 303”[J].Jiangsu Agricultural Sciences,2014,42(11):131.
[6]李成松,冯玉磊,坎杂,等.单行悬挂式马铃薯施肥种植机的研制[J].江苏农业科学,2013,41(06):369.
Li Chengsong,et al.Development of potato fertilizing and planting machine of single-line and suspension type[J].Jiangsu Agricultural Sciences,2013,41(11):369.
[7]陈建保,段伟伟.马铃薯加工专用薯脱毒种薯的生产现状及改进措施——以乌兰察布地区夏波蒂原种(G2)生产为例[J].江苏农业科学,2015,43(12):117.
Chen Jianbao,et al.Production status investigation and improvement measures of virus-free seeds of processing potatoes—Taking production of Shepody (G2) as an example in Wulanchabu area[J].Jiangsu Agricultural Sciences,2015,43(11):117.
[8]郭成瑾,张丽荣,沈瑞清.土壤消毒对马铃薯连作田土壤微生物数量的影响[J].江苏农业科学,2014,42(10):367.
Guo Chengjin,et al.Effects of soil sterilization on soil microbial quantity in potato continuous cropping land[J].Jiangsu Agricultural Sciences,2014,42(11):367.
[9]张海颖,郭凤柳,许华民,等.河北省张北地区马铃薯疮痂病的病菌鉴定[J].江苏农业科学,2014,42(10):131.
Zhang Haiying,et al.Identification of potato scab pathogen in Zhangbei,Hebei Province[J].Jiangsu Agricultural Sciences,2014,42(11):131.
[10]贺苗苗.不同基因型马铃薯的花药培养研究[J].江苏农业科学,2014,42(09):90.
He Miaomiao.Study on anther culture of different genotypes of potatoes[J].Jiangsu Agricultural Sciences,2014,42(11):90.