|本期目录/Table of Contents|

[1]张澳雪,崔艳荣,李素若,等.基于改进RegNet网络的玉米叶片病害识别研究[J].江苏农业科学,2024,52(11):216-224.
 Zhang Aoxue,et al.Identification of maize leaf diseases based on improved RegNet network[J].Jiangsu Agricultural Sciences,2024,52(11):216-224.
点击复制

基于改进RegNet网络的玉米叶片病害识别研究(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第11期
页码:
216-224
栏目:
农业工程与信息技术
出版日期:
2024-06-05

文章信息/Info

Title:
Identification of maize leaf diseases based on improved RegNet network
作者:
张澳雪1崔艳荣1李素若2陈华锋2胡玉荣2胡蓉华1
1.长江大学计算机科学学院,湖北荆州 434000; 2.荆楚理工学院计算机工程学院,湖北荆门 448000
Author(s):
Zhang Aoxueet al
关键词:
玉米叶片病害图像分类RegNetInception v3金字塔池化
Keywords:
-
分类号:
TP391.41;S126
DOI:
-
文献标志码:
A
摘要:
针对目前玉米叶片病害识别模型参数量大、移动端部署难、识别准确率不够高等问题,提出一种基于轻量化网络RegNet和迁移学习的识别方法,首先收集4类常见玉米叶片病害图像样本,通过平移、镜像、旋转等方式对图像进行处理,以增加图片数量,提升模型识别和泛化能力。接着以轻量化网络RegNet为主体,采用Inception A结构对stem中的3×3卷积进行替换,增加模型宽度,以分解卷积的形式对玉米叶片病害进行多尺度特征提取。最后在head中引入金字塔池化模块(pyramid pooling module,PPM),用于减少空间信息丢失,保留病害重要特征和细节。试验结果表明,改进后的模型相比RegNet,Top-1准确率提升1.26百分点,平均精确率提升1.34百分点,平均F1分数提升133百分点,平均召回率提升1.34百分点,参数量只增加了0.89×106,改进后的模型具有更好的特征提取能力,该模型为玉米叶片病害类型的识别提供了一种有效的方法。
Abstract:
-

参考文献/References:

[1]Bock C H,Poole G H,Parker P E,et al. Plant disease severity estimated visually,by digital photography and image analysis,and by hyperspectral imaging[J]. Critical Reviews in Plant Sciences,2010,29(2):59-107.
[2]万军杰,祁力钧,卢中奥,等. 基于迁移学习的GoogLeNet果园病虫害识别与分级[J]. 中国农业大学学报,2021,26(11):209-221.
[3]Gayathri Devi T,Neelamegam P. Image processing based rice plant leaves diseases in Thanjavur,Tamilnadu[J]. Cluster Computing,2019,22(6):13415-13428.
[4]党满意,孟庆魁,谷芳,等. 基于机器视觉的马铃薯晚疫病快速识别[J]. 农业工程学报,2020,36(2):193-200.
[5]LeCun Y,Kavukcuoglu K,Farabet C.Convolutional networks and applications in vision[C]//Proceedings of 2010 IEEE International Symposium on Circuits and Systems.Paris,France.IEEE,2010:253-256.
[6]张云,许江淳,王志伟,等. 基于机器视觉的棉花异性纤维检测技术优化研究[J]. 中国农机化学报,2018,39(9):61-65.
[7]毕鹏程,罗健欣,陈卫卫. 轻量化卷积神经网络技术研究[J]. 计算机工程与应用,2019,55(16):25-35.
[8]Chollet F. Xception:deep learning with depthwise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,HI,USA.IEEE,2017:1800-1807.
[9]Zhang X Y,Zhou X Y,Lin M X,et al. ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA.IEEE,2018:6848-6856.
[10]Zhou D Q,Hou Q B,Chen Y P,et al. Rethinking bottleneck structure for efficient mobile network design[C]//Vedaldi A,Bischof H,Brox T,et al. European Conference on Computer Vision.Cham:Springer,2020:680-697.
[11]Radosavovic I,Kosaraju R P,Girshick R,et al. Designing network design spaces[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Seattle,WA,USA.IEEE,2020:10425-10433.
[12]杜甜甜,南新元,黄家興,等. 改进RegNet识别多种农作物病害受害程度[J]. 农业工程学报,2022,38(15):150-158.
[13]董萍,卫梦华,时雷,等. 迁移学习在玉米叶片病害识别中的研究与应用[J]. 中国农机化学报,2022,43(3):146-152.
[14]谢家兴,陈斌瀚,彭家骏,等. 基于改进ShuffleNet v2的荔枝叶片病虫害图像识别[J]. 果树学报,2023,40(5):1024-1035.
[15]刘小玲,崔艳荣. 基于改进轻量化网络MobileNeXt的苹果叶片病害识别方法[J]. 江苏农业科学,2023,51(10):185-193.
[16]Szegedy C,Liu W,Jia Y Q,et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Boston,MA,USA.IEEE,2015:1-9.
[17]Zhao H S,Shi J P,Qi X J,et al. Pyramid scene parsing network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,HI,USA.IEEE,2017:6230-6239.
[18]Zhuang J Y,Jin X J,Chen Y,et al. Drought stress impact on the performance of deep convolutional neural networks for weed detection in bahiagrass[J]. Grass and Forage Science,2023,78(1):214-223.
[19]刘颖,雷研博,范九伦,等. 基于小样本学习的图像分类技术综述[J]. 自动化学报,2021,47(2):297-315.
[20]温艳兰,陈友鹏,王克强,等. 基于迁移学习和改进残差网络的复杂背景下害虫图像识别[J]. 江苏农业科学,2023,51(8):171-177.
[21]Selvaraju R R,Cogswell M,Das A,et al. Grad-CAM:visual explanations from deep networks via gradient-based localization[C]//2017 IEEE International Conference on Computer Vision (ICCV).Venice,Italy.IEEE,2017:618-626.

相似文献/References:

[1]孙建伟.水涝胁迫对玉米细胞保护酶同工酶的影响[J].江苏农业科学,2013,41(04):85.
[2]刘荣,张卫建,齐华,等.密植型玉米“中单909”高产群体结构特征[J].江苏农业科学,2013,41(05):56.
 Liu Rong,et al.Study on high yield population structure of close planting maize cultivar “Zhongdan 909”[J].Jiangsu Agricultural Sciences,2013,41(11):56.
[3]沈浜凯,肖龙云,冯乃杰,等.黄腐酸和AM真菌对玉米幼苗抗旱性的影响[J].江苏农业科学,2013,41(05):64.
 Shen Bangkai,et al.Effects of fulvic acid and AM fungi on drought resistance of maize seedlings[J].Jiangsu Agricultural Sciences,2013,41(11):64.
[4]张金然,缑艳霞,孙丽鹏.固氮螺菌157对玉米、向日葵的促生长作用[J].江苏农业科学,2014,42(12):116.
 Zhang Jinran,et al.Effects of Azospirillum 157 on growth of maize and sunflower[J].Jiangsu Agricultural Sciences,2014,42(11):116.
[5]白小军,吴燕,牛艳,等.玉米中乙草胺和莠去津残留量GC-MS/MS分析法的建立[J].江苏农业科学,2014,42(11):334.
 Bai Xiaojun,et al().Establishment of GC-MS/MS analysis method of acetochlor and atrazine residues in maize[J].Jiangsu Agricultural Sciences,2014,42(11):334.
[6]邹晓威,王娜,刘芬,等.玉米抗病相关基因在玉米与玉米丝黑穗病菌、玉米黑粉病菌互作过程中的表达差异分析[J].江苏农业科学,2014,42(11):150.
 Zou Xiaowei,et al(0).Different expression of resistance-related genes between Sporisorium reilianum and Ustilago maydis interact with corn[J].Jiangsu Agricultural Sciences,2014,42(11):150.
[7]杨洪兴,陈静,陈艳萍.江苏省玉米机械化生产的发展及育种对策思考[J].江苏农业科学,2014,42(11):116.
 Yang Hongxing,et al().Development and breeding strategy of mechanized production of maize in Jiangsu Province[J].Jiangsu Agricultural Sciences,2014,42(11):116.
[8]张丽妍,霍剑锋,孟繁盛,等.不同肥料、施肥水平及施用方法对玉米产量、性状及效益的影响[J].江苏农业科学,2014,42(11):119.
 Zhang Liyan,et al (9).Effects of different fertilizers,fertilizer levels and fertilizing methods on yield,characters and benefit of maize[J].Jiangsu Agricultural Sciences,2014,42(11):119.
[9]王雷,崔震海,张立军.玉米C4型PEPC全长基因的克隆与表达载体构建[J].江苏农业科学,2014,42(11):26.
 Wang Lei,et al().Cloning and expression vector construction of full-length C4 type PEPC gene in maize[J].Jiangsu Agricultural Sciences,2014,42(11):26.
[10]雷恩,赵光明,刘艳红.不同稀释浓度松土保水剂对玉米营养生长的影响[J].江苏农业科学,2013,41(06):77.
 Lei En,et al.Effect of different dilutions of super absorbent polymer on vegetative growth of maize[J].Jiangsu Agricultural Sciences,2013,41(11):77.
[11]马晓,邢雪,武青海.基于改进ConvNext的复杂背景下玉米叶片病害分类[J].江苏农业科学,2023,51(19):190.
 Ma Xiao,et al.Maize leaf disease classification under complex background based on improved ConvNext[J].Jiangsu Agricultural Sciences,2023,51(11):190.

备注/Memo

备注/Memo:
收稿日期:2023-12-07
基金项目:国家自然科学基金面上项目(编号:62077018);中国高校产学研创新基金(编号:2021FNA01006)。
作者简介:张澳雪(2000—),女,湖北随州人,硕士研究生,主要从事机器学习与人工智能研究。E-mail:2022710649@yangtzeu.edu.cn。
通信作者:崔艳荣,博士,教授,主要从事网络安全、信息处理研究。E-mail:cyanr@yangtzeu.edu.cn。
更新日期/Last Update: 2024-06-05