|本期目录/Table of Contents|

[1]郑妍妍,徐玲洁,冯花蕾,等.模拟干旱胁迫对4种油松根系真菌生长及生理特性的影响[J].江苏农业科学,2024,52(14):236-243.
 Zheng Yanyan,et al.Impacts of simulated drought stress on growth and physiological characteristics of four fungi from Pinus tabulaeformis roots[J].Jiangsu Agricultural Sciences,2024,52(14):236-243.
点击复制

模拟干旱胁迫对4种油松根系真菌生长及生理特性的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第14期
页码:
236-243
栏目:
资源与环境
出版日期:
2024-07-20

文章信息/Info

Title:
Impacts of simulated drought stress on growth and physiological characteristics of four fungi from Pinus tabulaeformis roots
作者:
郑妍妍徐玲洁冯花蕾付强周勇
河北农业大学,河北保定 071000
Author(s):
Zheng Yanyanet al
关键词:
PEG-6000抗旱性外生菌根真菌深色有隔内生真菌抗氧化酶活性耐受性
Keywords:
-
分类号:
S182
DOI:
-
文献标志码:
A
摘要:
采用PEG-6000模拟干旱胁迫,固体培养和液体培养的方法,研究0、15%、25%、35% PEG-6000对从油松根系分离出的2种外生菌根真菌[血红密孔菌(Pycnoporus sanguineus)、彩色豆马勃(Pisolithus tinctorius)]和2种深色有隔内生真菌[短梗蠕孢菌(Pleotrichocladium opacum)、须壳孢属(Pyrenochaeta sp.)]生长及生理特性的影响,以期探究油松根系真菌的抗旱机制,了解4种真菌对干旱胁迫的耐受性,为干旱地区挖掘具有应用价值的潜力菌株。结果表明,4种真菌在PEG胁迫下均能够生长,与对照相比,Ps生物量在15%、25% PEG-6000下显著提高,Pt生物量仅在35% PEG-6000下显著提高,其余菌株的生物量在PEG胁迫下均显著提高,且Po、Pss生物量显著高于Ps、Pt。在PEG胁迫下4种真菌均在一定程度上降低了培养液pH值,提高了抗氧化酶活性,多数能够提高脯氨酸和可溶性蛋白的含量来应对干旱胁迫环境。Po、Pss的抗氧化酶活性在35% PEG-6000下仍显著高于对照,SOD活性分别提高了48.7%、82.0%,CAT活性分别提高了40.3%、122.4%。Pss在35% PEG-6000下脯氨酸含量和可溶性蛋白含量相比对照仍显著提高,分别提高了131.1%、267.6%。此外4种真菌在受到PEG胁迫时,体内MDA的积累有所差异。Ps的MDA含量仅在15% PEG-6000下相比对照显著降低,降低了38.8%。Pt、Po的MDA含量在PEG胁迫下(除15% PEG-6000)相比对照均显著增加,而Pss的MDA含量在PEG胁迫下均显著低于对照。综上,在PEG胁迫下,4种真菌对干旱胁迫均具有一定的耐受性,均能够通过在一定程度上降低培养液pH值,提高抗氧化酶活性,提高脯氨酸和可溶性蛋白的含量来适应干旱胁迫环境。4种真菌对干旱胁迫的耐受能力大小为Pss>Po>Ps>Pt
Abstract:
-

参考文献/References:

[1]王九龄.西部干旱半干旱地区生态建设中的造林问题[J]. 世界林业研究,2000,13(4):7-10.
[2]Tedersoo L,Bahram M,Toots M,et al. Towards global patterns in the diversity and community structure of ectomycorrhizal fungi[J]. Molecular Ecology,2012,21(17):4160-4170.
[3]Addy H D,Piercey M M,Currah R S. Microfungal endophytes in roots[J]. Canadian Journal of Botany,2005,83(1):1-13.
[4]Mandyam K,Loughin T,Jumpponen A. Isolation and morphological and metabolic characterization of common endophytes in annually burned tallgrass prairie[J]. Mycologia,2010,102(4):813-821.
[5]代梦雪,张光群,范旭杪,等. 胁迫生境深色有隔内生真菌生态分布与功能研究进展[J]. 应用与环境生物学报,2020,26(3):722-729.
[6]杨智,王华伟,沙涛. 外生菌根真菌的研究进展[J]. 中国食用菌,2016,35(1):1-7.
[7]邓勋,宋小双,尹大川,等. 深色有隔内生真菌提高宿主植物抗逆性的研究进展[J]. 安徽农业科学,2015,43(31):10-11,17.
[8]王艺,杨凯来. 菌根化马尾松苗生长形态对干旱及复水响应[J]. 西南农业学报,2022,35(8):1794-1801.
[9]温祝桂,王杰,汤阳泽,等. 外生菌根真菌彩色豆马勃(Pisolithu stinctorius)辅助植物修复重金属Cu污染土壤的应用潜力[J]. 生物技术通报,2017,33(4):149-156.
[10]毕银丽,解琳琳. 丛枝菌根真菌与深色有隔内生真菌生态修复功能与作用[J]. 微生物学报,2021,61(1):58-67.
[11]毕银丽,彭苏萍,王淑惠. 西部煤矿区深色有隔内生真菌修复机理与生态应用模式[J]. 煤炭学报,2022,47(1):460-469.
[12]刘梦娇,张英伟,柴立伟,等. 铜胁迫下4种外生菌根真菌的耐受性比较[J]. 菌物研究,2017,15(1):39-45.
[13]冯欢,豆青,王海华,等. 2种外生菌根真菌的铅耐受性及相关机制[J]. 西北林学院学报,2017,32(2):188-196.
[14]杨志慧,朱一丹,杨宝山,等. 两种外生菌根真菌对镉胁迫的生理生态响应[J]. 生态学杂志,2023,42(1):29-38.
[15]宋小双,邓勋,遇文婧,等. 盐胁迫对深色有隔内生真菌D575和D377生长及营养代谢的影响[J]. 中国农学通报,2015,31(13):36-42.
[16]Lehto T,Brosinsky A,Heinonen-Tanski H,et al. Freezing tolerance of ectomycorrhizal fungi in pure culture[J]. Mycorrhiza,2008,18(8):385-392.
[17]卢中科,李敏,丁贵杰. PEG-6000胁迫下3种外生菌根真菌的生长特性[J]. 西北林学院学报,2020,35(5):151-158.
[18]侯力峰. 三种荒漠植物深色有隔内生真菌物种多样性和耐盐性研究[D]. 保定:河北大学,2020:53.
[19]乔富廉. 植物生理学实验分析测定技术[M]. 北京:中国农业科技出版社,2002:151-152.
[20]蔡庆生. 植物生理学实验[M]. 北京:中国农业大学出版社,2013:39-178.
[21]Christmann A,Hoffmann T,Teplova I,et al. Generation of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis[J]. Plant Physiology,2005,137(1):209-219.
[22]Verslues P E,Bray E A. LWR1 and LWR2 are required for osmoregulation and osmotic adjustment in Arabidopsis[J]. Plant Physiology,2004,136(1):2831-2842.
[23]Verslues P E,Bray E A. Role of abscisic acid(ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation[J]. Journal of Experimental Botany,2006,57(1):201-212.
[24]杨艳. 外生菌根真菌提高油松抗旱性的研究[D]. 杨凌:西北农林科技大学,2010:24-48.
[25]简灵静,张瑶锐,林晗,等. 铝胁迫下5种内生真菌的生长与吸收动力学特征[J] . 森林与环境学报,2024,44(2):157-163.
[26]弓明钦,陈应龙,仲崇禄,等. 菌根研究及应用[M]. 北京:中国林业出版社,1997:37-46.
[27]李翠,杨艳,张茹琴,等. 4种外生菌根真菌培养条件的研究[J]. 西北农林科技大学学报(自然科学版),2009,37(2):155-159.
[28]周慧杰. 培养液pH对外生菌根真菌生长影响分析[J]. 中国食用菌,2019,38(8):42-44.
[29]孙一荣,朱教君. 水分处理对沙地樟子松幼苗膜脂过氧化作用及保护酶活性影响[J]. 生态学杂志,2008,27(5):729-734.
[30]赵晶晶,詹万龙,周浓. 非生物胁迫下植物体内活性氧和丙酮醛代谢的研究进展[J]. 南方农业学报,2022,53(8):2099-2113.
[31]刘燕霞,龙俊萌,王静茹,等. 五种漠境深色有隔内生真菌对小麦促生抗旱效应研究[J]. 中国科学(生命科学),2021,51(9):1339-1349.
[32]王骞春,陆爱君,冯健,等. 干旱胁迫对日本落叶松生理指标的影响[J]. 东北林业大学学报,2016,44(8):13-17,40.
[33]曹清河,李雪华,戴习彬,等. PEG-6000模拟干旱胁迫对甘薯近缘野生种Ipomoea trifida(Kunth) G.Don幼苗生理生化指标的影响[J]. 西南农业学报,2016,29(11):2536-2541.
[34]胡倩楠. 荒漠植物深色有隔内生真菌物种多样性及耐旱性研究[D]. 保定:河北大学,2022:13-40.
[35]Khan A L,Hamayun M,Khan S A,et al. Pure culture of Metarhizium anisopliae LHL07 reprograms soybean to higher growth and mitigates salt stress[J]. World Journal of Microbiology and Biotechnology,2012,28(4):1483-1494.
[36]周翠,张雯,王婷,等. 秋华柳抗氧化酶系统对镉胁迫的响应[J]. 西南大学学报(自然科学版),2017,39(10):27-34.

相似文献/References:

[1]沈浜凯,肖龙云,冯乃杰,等.黄腐酸和AM真菌对玉米幼苗抗旱性的影响[J].江苏农业科学,2013,41(05):64.
 Shen Bangkai,et al.Effects of fulvic acid and AM fungi on drought resistance of maize seedlings[J].Jiangsu Agricultural Sciences,2013,41(14):64.
[2]李会芬,时丽冉,崔兴国,等.水分胁迫对不同品种谷子萌发期的影响[J].江苏农业科学,2013,41(05):67.
 Li Huifen,et al.Effect of water stress on germination stage of different millet cultivars[J].Jiangsu Agricultural Sciences,2013,41(14):67.
[3]徐艳,江建敏,国骏,等.黄瓜褐斑病菌菌丝蛋白对小麦种子萌发、生长及抗旱性的影响[J].江苏农业科学,2014,42(11):159.
 Xu Yan,et al(9).Effects of cucumber brown spot pathogen mycelium protein on seed germination,growth and drought resistance of wheat[J].Jiangsu Agricultural Sciences,2014,42(14):159.
[4]李葵花,高玉亮,吴京姬.转P5CS基因马铃薯“东农303”耐盐、抗旱性研究[J].江苏农业科学,2014,42(11):131.
 Li Kuihua,et al().Study on salt resistance and drought resistance of P5CS transgenic potato cultivar “Dongnong 303”[J].Jiangsu Agricultural Sciences,2014,42(14):131.
[5]张永侠,原海燕,顾春笋,等.红籽鸢尾(Iris foetidissima L.)的抗旱性[J].江苏农业科学,2014,42(08):174.
 Zhang Yongxia,et al.Study on drought resistance of Iris foetidissima L.[J].Jiangsu Agricultural Sciences,2014,42(14):174.
[6]滕忠才,张立红,刘廷辉,等.小菜蛾高毒力球孢白僵菌菌株抗旱性研究[J].江苏农业科学,2013,41(09):119.
 Teng Zhongcai,et al.Study on drought resistance of Beauveria bassiana with high virulence on Plutella xylostella[J].Jiangsu Agricultural Sciences,2013,41(14):119.
[7]谭彦,崔妍,彭重华,等.5种园林地被植物的抗旱性研究[J].江苏农业科学,2016,44(03):203.
 Tan Yan,et al.Study on drought resistance of five ground-cover plants[J].Jiangsu Agricultural Sciences,2016,44(14):203.
[8]李秀英,王丕武.转BADH基因大豆抗旱、耐盐性及主要农艺性状分析[J].江苏农业科学,2013,41(12):75.
 Li Xiuying,et al.Analysis of drought resistance, salt tolerance and main agronomic traits of soybeans transformed with BADH gene[J].Jiangsu Agricultural Sciences,2013,41(14):75.
[9]田福平,路远,张小甫,等.苜蓿新品种(系)的抗旱性综合评价[J].江苏农业科学,2014,42(01):160.
 Tian Fuping,et al.Comprehensive evaluation of drought resistance of new alfalfa varieties[J].Jiangsu Agricultural Sciences,2014,42(14):160.
[10]宋丹华,黄俊华,王丰,等.铃铛刺苗期对持续干旱胁迫的生理响应[J].江苏农业科学,2016,44(05):292.
 Song Danhua,et al.Physiological response of Halimodendron halodendron (Pall.) Voss to drought stress at seedling stage[J].Jiangsu Agricultural Sciences,2016,44(14):292.
[11]安欣慧,陈桂顺,鞠晓影,等.不同小麦品种种子萌发期的抗旱性分析[J].江苏农业科学,2017,45(14):54.
 An Xinhui,et al.Drought resistance of different wheat varieties in germination period[J].Jiangsu Agricultural Sciences,2017,45(14):54.
[12]尹秀,王俊,张二豪,等.PEG-6000浸种处理对甘青青兰种子萌发及幼苗抗旱性的影响[J].江苏农业科学,2020,48(13):168.
 Yin Xiu,et al.Influences of soaking seeds with PEG-6000 on seed germination and seedling drought resistance of Dracocephalum tanguticum Maxim.[J].Jiangsu Agricultural Sciences,2020,48(14):168.

备注/Memo

备注/Memo:
收稿日期:2023-09-02
基金项目:国家自然科学基金(编号:32001112);河北省自然科学基金(编号:C2023204238、C2020204169)。
作者简介:郑妍妍(1998—),女,河北元氏人,硕士,研究方向为园林植物资源评价与种质创新。E-mail:787472707@qq.com。
通信作者:周勇,博士,讲师,主要从事园林植物生理生态学研究。E-mail:zhouyong275@sina.com。
更新日期/Last Update: 2024-07-20