|本期目录/Table of Contents|

[1]王佳丽,蒯雁,杨成伟,等.基于无人机多光谱的烤烟冠层叶绿素含量反演[J].江苏农业科学,2024,52(15):232-238.
 Wang Jiali,et al.Inversion of chlorophyll content in canopy of flue-cured tobacco based on UAV multispectrum[J].Jiangsu Agricultural Sciences,2024,52(15):232-238.
点击复制

基于无人机多光谱的烤烟冠层叶绿素含量反演(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第15期
页码:
232-238
栏目:
农业工程与信息技术
出版日期:
2024-08-05

文章信息/Info

Title:
Inversion of chlorophyll content in canopy of flue-cured tobacco based on UAV multispectrum
作者:
王佳丽12蒯雁3杨成伟3字韶兴3张国兴3杨泽远3张久权12
1.中国农业科学院研究生院,北京 100081; 2.中国农业科学院烟草研究所,山东青岛 266100;3.中国烟草总公司云南省大理州公司,云南大理 671000
Author(s):
Wang Jialiet al
关键词:
无人机多光谱叶绿素含量逐步回归随机森林烟草
Keywords:
-
分类号:
S572.01;S127
DOI:
-
文献标志码:
A
摘要:
叶绿素含量对作物的光合作用有直接影响,同时影响作物有机质的积累,成为监测作物生长的重要指标,烟草作为一种特殊的经济作物,快速监测其叶绿素含量具有重要意义。无人机遥感技术的发展为实现快速、无损监测提供了有利条件。为了探索一种快速便捷的估算烤烟冠层叶绿素含量的方法,实现方便高效的作物监测,利用SPAD-502型叶绿素仪测定烟草不同生育期叶绿素含量的实际值,并利用搭载多光谱相机的无人机采集对应时期烟草的光谱图像,研究不同施氮水平下烟草冠层叶绿素含量的变化规律,另外选取58种常用植被指数与冠层实测叶绿素含量进行相关性分析,选择与实测叶绿素含量极显著相关的11种植被指数,构建烟草冠层叶绿素含量逐步回归的随机森林模型。结果表明,不同施氮浓度下,旺长期叶绿素含量最高,同一生育期,叶绿素含量随施氮浓度的增加而上升;采用随机森林建立的烟草旺长期模型r2为0.790,RMSE为2.140。本研究证明,叶绿素含量随施氮浓度增加而变化明显,2种建模方法中随机森林模型的精度优于逐步回归模型,研究为烟草叶绿素含量的快速估算提供了一种新的方法,为利用无人机平台进行作物监测提供了可行的参考。
Abstract:
-

参考文献/References:

[1]李汉生,徐永. 光照对叶绿素合成的影响[J]. 现代农业科技,2014(21):161-164.
[2]Pinto F,Celesti M,Acebron K,et al. Dynamics of sun-induced chlorophyll fluorescence and reflectance to detect stress-induced variations in canopy photosynthesis[J]. Plant,Cell & Environment,2020,43(7):1637-1654.
[3]王磊,周建平,许燕,等. 农用无人机的应用现状与展望[J]. 农药,2019,58(9):625-630,634.
[4]王丽爱,马昌,周旭东,等. 基于随机森林回归算法的小麦叶片SPAD值遥感估算[J]. 农业机械学报,2015,46(1):259-265.
[5]汪小钦,王苗苗,王绍强,等. 基于可见光波段无人机遥感的植被信息提取[J]. 农业工程学报,2015,31(5):152-157,159,158.
[6]Jiang Y,Li C Y,Paterson A H.High throughput phenotyping of cotton plant height using depth images under field conditions[J]. Computers and Electronics in Agriculture,2016,130:57-68.
[7]Lu S,Lu X T,Zhao W L,et al. Comparing vegetation indices for remote chlorophyll measurement of white poplar and Chinese elm leaves with different adaxial and abaxial surfaces[J]. Journal of Experimental Botany,2015,66(18):5625-5637.
[8]孟沌超,赵静,兰玉彬,等. 基于无人机可见光影像的玉米冠层SPAD反演模型研究[J]. 农业机械学报,2020,51(增刊2):366-374.
[9]刘涛,张寰,王志业,等. 利用无人机多光谱估算小麦叶面积指数和叶绿素含量[J]. 农业工程学报,2021,37(19):65-72.
[10]汪旭,邓裕帅,练雪萌,等. 基于无人机多光谱技术的甜菜冠层叶绿素含量反演[J]. 中国糖料,2022,44(4):36-42.
[11]曹强. 基于主动作物冠层传感器的冬小麦、水稻精准氮素管理[D]. 北京:中国农业大学,2014.
[12]Jordan C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology,1969,50(4):663-666.
[13]Daughtry C S T,Walthall C L,Kim M S,et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment,2000,74(2):229-239.
[14]Huete A,Justice C,Liu H. Development of vegetation and soil indices for MODIS-EOS[J]. Remote Sensing of Environment,1994,49(3):224-234.
[15]Liu H Q,Huete A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise[J]. IEEE Transactions on Geoscience and Remote Sensing,1995,33(2):457-465.
[16]Rondeaux G,Steven M,Baret F. Optimization of soil-adjusted vegetation indices[J]. Remote Sensing of Environment,1996,55(2):95-107.
[17]Daughtry C S T,Gallo K P,Goward S N,et al. Spectral estimates of absorbed radiation and phytomass production in corn and soybean canopies[J]. Remote Sensing of Environment,1992,39(2):141-152.
[18]Main R,Cho M A,Mathieu R,et al. An investigation into robust spectral indices for leaf chlorophyll estimation[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2011,66(6):751-761.
[19]刘霞. 基于冠层主动传感器的冬小麦长势监测及适宜植被指数动态模型研究[D]. 南京:南京农业大学,2017.
[20]Haboudane D,Miller J R,Pattey E,et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies:modeling and validation in the context of precision agriculture[J]. Remote Sensing of Environment,2004,90(3):337-352.
[21]姜海玲,杨杭,陈小平,等. 利用光谱指数反演植被叶绿素含量的精度及稳定性研究[J]. 光谱学与光谱分析,2015,35(4):975-981.
[22]Wu C Y,Niu Z,Tang Q,et al. Estimating chlorophyll content from hyperspectral vegetation indices:modeling and validation[J]. Agricultural and Forest Meteorology,2008,148(8/9):1230-1241.
[23]Rouse J,Haas R H,Deering D,et al. Monitoringthe the vernal advancement and retrogradation (green wave effect) of natural vegetation[EB/OL]. (1973-01-27) [2023-06-30].https://ntrs.nasa.gov/api/citations/19730017588/downloads/19730017588.pdf.
[24]李红军,张立周,陈曦鸣,等. 应用数字图像进行小麦氮素营养诊断中图像分析方法的研究[J]. 中国生态农业学报,2011,19(1):155-159.
[25]Goel N S,Qin W. Influences of canopy architecture on relationships between various vegetation indices and LAI and Fpar:a computer simulation[J]. Remote Sensing Reviews,1994,10(4):309-347.
[26]张玲,陈新平,贾良良. 基于无人机可见光遥感的夏玉米氮素营养动态诊断参数研究[J]. 植物营养与肥料学报,2018,24(1):261-269.
[27]高林,杨贵军,李红军,等. 基于无人机数码影像的冬小麦叶面积指数探测研究[J]. 中国生态农业学报,2016,24(9):1254-1264.
[28]Roujean J L,Breon F M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements[J]. Remote Sensing of Environment,1995,51(3):375-384.
[29]Huete A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment,1988,25(3):295-309.
[30]姜蓝齐,王萍,姜丽霞,等. 温度植被干旱指数(TVDI)在农业干旱监测中的应用[J]. 中国农学通报,2021,37(29):132-139.
[31]Broge N H,Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sensing of Environment,2001,76(2):156-172.
[32]Gitelson A A,Kaufman Y J,Stark R,et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment,2002,80(1):76-87.
[33]由明明,常庆瑞,田明璐,等. 基于随机森林回归的油菜叶片SPAD值遥感估算[J]. 干旱地区农业研究,2019,37(1):74-81.
[34]方匡南,吴见彬,朱建平,等. 随机森林方法研究综述[J]. 统计与信息论坛,2011,26(3):32-38.
[35]杨培杰,韩保栋,张玉燕,等. Sentinel-2影像结合空间关联随机森林模型反演裸土期耕地土壤全氮含量[J]. 江苏农业科学,2023,51(11):185-192.

相似文献/References:

[1]金星.基于LED光源的多光谱诱虫灯研究[J].江苏农业科学,2015,43(10):476.
 Jin Xing.Study on multi-spectral insert light trap based on LED light source[J].Jiangsu Agricultural Sciences,2015,43(15):476.
[2]孙世泽,汪传建,刘伟,等.无人机多光谱草地估产中的最佳波段组合研究[J].江苏农业科学,2018,46(04):190.
 Sun Shize,et al.Study on optimum band combination in estimating biomass of grassland based on UAV multispectral images[J].Jiangsu Agricultural Sciences,2018,46(15):190.
[3]梁钊雄,周红艺,吴国威,等.基于无人机影像的崩岗空间分布特征研究[J].江苏农业科学,2018,46(04):220.
 Liang Zhaoxiong,et al.Study on spatial distribution of collapse base on UAV images[J].Jiangsu Agricultural Sciences,2018,46(15):220.
[4]琚书存,汪志存,张东彦,等.基于高分辨率无人机影像的喷药除草效果评估[J].江苏农业科学,2019,47(06):76.
 Ju Shucun,et al.Evaluation of spraying and weeding effect based on high resolution UAV image[J].Jiangsu Agricultural Sciences,2019,47(15):76.
[5]苏瑞东.无人机在现代农业中的应用综述[J].江苏农业科学,2019,47(21):75.
 Su Ruidong.Application of UAVs in modern agriculture: a review[J].Jiangsu Agricultural Sciences,2019,47(15):75.
[6]孙星星,王凯,李红阳,等.航空超低量喷雾技术在水稻生产上应用现状、存在问题及发展趋势[J].江苏农业科学,2020,48(13):29.
 Sun Xingxing,et al.Application status, existing problems and development trends of aviation ultra-low volume spray technology in rice production[J].Jiangsu Agricultural Sciences,2020,48(15):29.
[7]林峰.虚拟现实技术在农业可视化场景快速构建中的应用[J].江苏农业科学,2020,48(14):268.
 Lin Feng.Application of virtual reality technology in rapid construction of agricultural visualization scene[J].Jiangsu Agricultural Sciences,2020,48(15):268.
[8]辛京达,陈成,刀剑,等.基于土壤光谱特性的土壤类型区分研究[J].江苏农业科学,2021,49(10):207.
 Xin Jingda,et al.Study on differentiation of soil types based on soil spectral characteristics[J].Jiangsu Agricultural Sciences,2021,49(15):207.
[9]杨栋淏,李亚强,刀剑,等.基于无人机多光谱与地面高光谱遥感的土壤主要养分含量估测[J].江苏农业科学,2022,50(2):178.
 Yang Donghao,et al.Estimation of soil main nutrient content based on UAV multispectral and ground hyperspectral remote sensing[J].Jiangsu Agricultural Sciences,2022,50(15):178.
[10]王羿,丁鸣鸣,何菁,等.基于不同建模方法的土壤pH值无人机遥感影像反演[J].江苏农业科学,2022,50(14):224.
 Wang Yi,et al.Soil pH UAV remote sensing image inversion based on different modeling methods[J].Jiangsu Agricultural Sciences,2022,50(15):224.
[11]徐国钦,黄明凤,黄建平.基于改进语义分割模型的无人机多光谱图像杂草分割[J].江苏农业科学,2022,50(12):212.
 Xu Guoqin,et al.Segmentation of UAV multispectral weed image based on improved semantic segmentation model[J].Jiangsu Agricultural Sciences,2022,50(15):212.
[12]杨野,杨德昌,孙红,等.基于无人机多光谱遥感和机器学习算法的南疆棉花生物量估算[J].江苏农业科学,2023,51(15):179.
 Yang Ye,et al.Estimation of cotton biomass in southern Xinjiang based on UAV multi-spectral remote sensing and machine learning algorithm[J].Jiangsu Agricultural Sciences,2023,51(15):179.

备注/Memo

备注/Memo:
收稿日期:2023-08-29
基金项目:中国烟草总公司重点研发项目(编号:110202102041);云南省烟草公司大理州公司重点项目(编号:2021530000241026)。
作者简介:王佳丽(1997—),女,山东潍坊人,硕士研究生,从事烟草栽培生理研究。E-mail:w15653626269@163.com。
通信作者:张久权,硕士,研究员,硕士生导师,从事烟草智慧农业研究。E-mail:zhangjiuquan@caas.cn。
更新日期/Last Update: 2024-08-05