[1]李汉生,徐永. 光照对叶绿素合成的影响[J]. 现代农业科技,2014(21):161-164.
[2]Pinto F,Celesti M,Acebron K,et al. Dynamics of sun-induced chlorophyll fluorescence and reflectance to detect stress-induced variations in canopy photosynthesis[J]. Plant,Cell & Environment,2020,43(7):1637-1654.
[3]王磊,周建平,许燕,等. 农用无人机的应用现状与展望[J]. 农药,2019,58(9):625-630,634.
[4]王丽爱,马昌,周旭东,等. 基于随机森林回归算法的小麦叶片SPAD值遥感估算[J]. 农业机械学报,2015,46(1):259-265.
[5]汪小钦,王苗苗,王绍强,等. 基于可见光波段无人机遥感的植被信息提取[J]. 农业工程学报,2015,31(5):152-157,159,158.
[6]Jiang Y,Li C Y,Paterson A H.High throughput phenotyping of cotton plant height using depth images under field conditions[J]. Computers and Electronics in Agriculture,2016,130:57-68.
[7]Lu S,Lu X T,Zhao W L,et al. Comparing vegetation indices for remote chlorophyll measurement of white poplar and Chinese elm leaves with different adaxial and abaxial surfaces[J]. Journal of Experimental Botany,2015,66(18):5625-5637.
[8]孟沌超,赵静,兰玉彬,等. 基于无人机可见光影像的玉米冠层SPAD反演模型研究[J]. 农业机械学报,2020,51(增刊2):366-374.
[9]刘涛,张寰,王志业,等. 利用无人机多光谱估算小麦叶面积指数和叶绿素含量[J]. 农业工程学报,2021,37(19):65-72.
[10]汪旭,邓裕帅,练雪萌,等. 基于无人机多光谱技术的甜菜冠层叶绿素含量反演[J]. 中国糖料,2022,44(4):36-42.
[11]曹强. 基于主动作物冠层传感器的冬小麦、水稻精准氮素管理[D]. 北京:中国农业大学,2014.
[12]Jordan C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology,1969,50(4):663-666.
[13]Daughtry C S T,Walthall C L,Kim M S,et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment,2000,74(2):229-239.
[14]Huete A,Justice C,Liu H. Development of vegetation and soil indices for MODIS-EOS[J]. Remote Sensing of Environment,1994,49(3):224-234.
[15]Liu H Q,Huete A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise[J]. IEEE Transactions on Geoscience and Remote Sensing,1995,33(2):457-465.
[16]Rondeaux G,Steven M,Baret F. Optimization of soil-adjusted vegetation indices[J]. Remote Sensing of Environment,1996,55(2):95-107.
[17]Daughtry C S T,Gallo K P,Goward S N,et al. Spectral estimates of absorbed radiation and phytomass production in corn and soybean canopies[J]. Remote Sensing of Environment,1992,39(2):141-152.
[18]Main R,Cho M A,Mathieu R,et al. An investigation into robust spectral indices for leaf chlorophyll estimation[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2011,66(6):751-761.
[19]刘霞. 基于冠层主动传感器的冬小麦长势监测及适宜植被指数动态模型研究[D]. 南京:南京农业大学,2017.
[20]Haboudane D,Miller J R,Pattey E,et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies:modeling and validation in the context of precision agriculture[J]. Remote Sensing of Environment,2004,90(3):337-352.
[21]姜海玲,杨杭,陈小平,等. 利用光谱指数反演植被叶绿素含量的精度及稳定性研究[J]. 光谱学与光谱分析,2015,35(4):975-981.
[22]Wu C Y,Niu Z,Tang Q,et al. Estimating chlorophyll content from hyperspectral vegetation indices:modeling and validation[J]. Agricultural and Forest Meteorology,2008,148(8/9):1230-1241.
[23]Rouse J,Haas R H,Deering D,et al. Monitoringthe the vernal advancement and retrogradation (green wave effect) of natural vegetation[EB/OL]. (1973-01-27) [2023-06-30].https://ntrs.nasa.gov/api/citations/19730017588/downloads/19730017588.pdf.
[24]李红军,张立周,陈曦鸣,等. 应用数字图像进行小麦氮素营养诊断中图像分析方法的研究[J]. 中国生态农业学报,2011,19(1):155-159.
[25]Goel N S,Qin W. Influences of canopy architecture on relationships between various vegetation indices and LAI and Fpar:a computer simulation[J]. Remote Sensing Reviews,1994,10(4):309-347.
[26]张玲,陈新平,贾良良. 基于无人机可见光遥感的夏玉米氮素营养动态诊断参数研究[J]. 植物营养与肥料学报,2018,24(1):261-269.
[27]高林,杨贵军,李红军,等. 基于无人机数码影像的冬小麦叶面积指数探测研究[J]. 中国生态农业学报,2016,24(9):1254-1264.
[28]Roujean J L,Breon F M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements[J]. Remote Sensing of Environment,1995,51(3):375-384.
[29]Huete A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment,1988,25(3):295-309.
[30]姜蓝齐,王萍,姜丽霞,等. 温度植被干旱指数(TVDI)在农业干旱监测中的应用[J]. 中国农学通报,2021,37(29):132-139.
[31]Broge N H,Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sensing of Environment,2001,76(2):156-172.
[32]Gitelson A A,Kaufman Y J,Stark R,et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment,2002,80(1):76-87.
[33]由明明,常庆瑞,田明璐,等. 基于随机森林回归的油菜叶片SPAD值遥感估算[J]. 干旱地区农业研究,2019,37(1):74-81.
[34]方匡南,吴见彬,朱建平,等. 随机森林方法研究综述[J]. 统计与信息论坛,2011,26(3):32-38.
[35]杨培杰,韩保栋,张玉燕,等. Sentinel-2影像结合空间关联随机森林模型反演裸土期耕地土壤全氮含量[J]. 江苏农业科学,2023,51(11):185-192.
[1]金星.基于LED光源的多光谱诱虫灯研究[J].江苏农业科学,2015,43(10):476.
Jin Xing.Study on multi-spectral insert light trap based on LED light source[J].Jiangsu Agricultural Sciences,2015,43(15):476.
[2]孙世泽,汪传建,刘伟,等.无人机多光谱草地估产中的最佳波段组合研究[J].江苏农业科学,2018,46(04):190.
Sun Shize,et al.Study on optimum band combination in estimating biomass of grassland based on UAV multispectral images[J].Jiangsu Agricultural Sciences,2018,46(15):190.
[3]梁钊雄,周红艺,吴国威,等.基于无人机影像的崩岗空间分布特征研究[J].江苏农业科学,2018,46(04):220.
Liang Zhaoxiong,et al.Study on spatial distribution of collapse base on UAV images[J].Jiangsu Agricultural Sciences,2018,46(15):220.
[4]琚书存,汪志存,张东彦,等.基于高分辨率无人机影像的喷药除草效果评估[J].江苏农业科学,2019,47(06):76.
Ju Shucun,et al.Evaluation of spraying and weeding effect based on high resolution UAV image[J].Jiangsu Agricultural Sciences,2019,47(15):76.
[5]苏瑞东.无人机在现代农业中的应用综述[J].江苏农业科学,2019,47(21):75.
Su Ruidong.Application of UAVs in modern agriculture: a review[J].Jiangsu Agricultural Sciences,2019,47(15):75.
[6]孙星星,王凯,李红阳,等.航空超低量喷雾技术在水稻生产上应用现状、存在问题及发展趋势[J].江苏农业科学,2020,48(13):29.
Sun Xingxing,et al.Application status, existing problems and development trends of aviation ultra-low volume spray technology in rice production[J].Jiangsu Agricultural Sciences,2020,48(15):29.
[7]林峰.虚拟现实技术在农业可视化场景快速构建中的应用[J].江苏农业科学,2020,48(14):268.
Lin Feng.Application of virtual reality technology in rapid construction of agricultural visualization scene[J].Jiangsu Agricultural Sciences,2020,48(15):268.
[8]辛京达,陈成,刀剑,等.基于土壤光谱特性的土壤类型区分研究[J].江苏农业科学,2021,49(10):207.
Xin Jingda,et al.Study on differentiation of soil types based on soil spectral characteristics[J].Jiangsu Agricultural Sciences,2021,49(15):207.
[9]杨栋淏,李亚强,刀剑,等.基于无人机多光谱与地面高光谱遥感的土壤主要养分含量估测[J].江苏农业科学,2022,50(2):178.
Yang Donghao,et al.Estimation of soil main nutrient content based on UAV multispectral and ground hyperspectral remote sensing[J].Jiangsu Agricultural Sciences,2022,50(15):178.
[10]王羿,丁鸣鸣,何菁,等.基于不同建模方法的土壤pH值无人机遥感影像反演[J].江苏农业科学,2022,50(14):224.
Wang Yi,et al.Soil pH UAV remote sensing image inversion based on different modeling methods[J].Jiangsu Agricultural Sciences,2022,50(15):224.
[11]徐国钦,黄明凤,黄建平.基于改进语义分割模型的无人机多光谱图像杂草分割[J].江苏农业科学,2022,50(12):212.
Xu Guoqin,et al.Segmentation of UAV multispectral weed image based on improved semantic segmentation model[J].Jiangsu Agricultural Sciences,2022,50(15):212.
[12]杨野,杨德昌,孙红,等.基于无人机多光谱遥感和机器学习算法的南疆棉花生物量估算[J].江苏农业科学,2023,51(15):179.
Yang Ye,et al.Estimation of cotton biomass in southern Xinjiang based on UAV multi-spectral remote sensing and machine learning algorithm[J].Jiangsu Agricultural Sciences,2023,51(15):179.