[1]徐建明,何丽芝,唐先进,等. 中国重金属污染耕地土壤安全利用存在问题与建议[J]. 土壤学报,2023,60(5):1289-1296.
[2]冯韶华,俞一帆,张旭峰,等. 中国农田土壤重金属污染源解析研究进展[J]. 环境污染与防治,2023,45(9):1300-1306.
[3]汤小群,张恒,吴颖靖,等. 镉砷复合污染土壤稳定化修复技术研究与应用[J]. 环境监测管理与技术,2023,35(1):64-67.
[4]孟媛,张亮,王林权,等. 复合污染土壤上几种叶类蔬菜对Cd和As的富集效应[J]. 植物营养与肥料学报,2019,25(6):972-981.
[5]杨京民,Bonheur G,姜娜,等. 镉、砷复合污染土壤钝化修复研究进展[J]. 环境污染与防治,2021,43(9):1189-1195,1200.
[6]赵维彬,王松,刘玲玲,等. 生物炭改良盐碱地效果及其对植物生长的影响研究进展[J]. 土壤通报,2024,55(2):551-561.
[7]刘洁,孙可,韩兰芳. 生物炭对土壤重金属形态及生物有效性影响的研究进展[J]. 环境化学,2021,40(6):1643-1658.
[8]孙远,陈敏,周育智,等. 改性生物炭对镉砷复合污染土壤的修复研究进展[J]. 江苏农业科学,2024,52(2):1-11.
[9]王丽,蔡景行,邵代兴,等. 改性生物炭对重金属污染修复研究进展及其机制分析[J]. 中国土壤与肥料,2023(6):232-238.
[10]Ding Y R,Zhao W C,Zhu G K,et al. Recent trends in foliar nanofertilizers:a review[J]. Nanomaterials,2023,13(21):2906.
[11]疏茂,汤岑鹏,赵峰娃,等. 纳米金属颗粒在土壤-植物系统中的迁移转化及生物效应研究进展[J]. 环境科学研究,2022,35(2):435-442.
[12]李宁静,许喆,姚烘烨,等. 粒径对纳米氧化锌的生物累积和氧化应激的影响[J]. 科学通报,2021,66(24):3219-3226.
[13]Mazarji M,Bayero M T,Minkina T,et al. Nanomaterials in biochar:review of their effectiveness in remediating heavy metal-contaminated soils[J]. The Science of the Total Environment,2023,880:163330.
[14]Tan M T,Li Y Q,Chi D C,et al. Efficient removal of ammonium in aqueous solution by ultrasonic magnesium-modified biochar[J]. Chemical Engineering Journal,2023,461:142072.
[15]Zha Y,Zhao B,Niu T X. Bamboo biochar and zinc oxide nanoparticles improved the growth of maize (Zea mays L.) and decreased cadmium uptake in Cd-contaminated soil[J]. Agriculture,2022,12(9):1507.
[16]国家市场监督管理总局,国家标准化管理委员会. 水处理剂分析方法第2部分:砷、汞、镉、铬、铅、镍、铜含量的测定电感耦合等离子体质谱法(ICP-MS):GB/T 430982—2023[S]. 北京:中国标准出版社,2023.
[17]叶宏萌,李国平,郑茂钟,等. 武夷山茶园土壤汞、镉和砷形态及茶叶有效性特征[J]. 热带作物学报,2016,37(11):2094-2099.
[18]甘志凯,陈玮,谌希. 不同形态硅对砷胁迫下小麦光合生理、砷累积及相关基因表达的影响[J]. 江苏农业科学,2024,52(2):65-72.
[19]王珣,杨小龙,叶子飘,等. 不同温度下甜高粱叶片光合作用的气孔限制和非气孔限制特征分析[J]. 植物生理学报,2022,58(7):1245-1253.
[20]周睿,颉建明,张婧,等. NaCl胁迫对青花菜幼苗生长生理特性的影响[J/OL]. 甘肃农业大学学报,2023:1-17(2023-12-06)[2024-05-12]. http://kns.cnki.net/kcms/detail/62.1055.s.20231206.0952.015.html.
[21]宁静,马一奇,杨慧,等. 西南岩溶区果园土壤—作物系统重金属元素迁移特征与污染评价[J]. 南方农业学报,2023,54(4):1106-1118.
[22]李旭,晁赢,阎祥慧,等. 植物修复技术治理农田土壤重金属污染的研究进展[J]. 河南农业科学,2022,51(12):10-18.
[23]范琼,冯剑,邹冬梅,等. 碱性液体肥对树仔菜-土壤重金属生物有效性及积累迁移的影响[J]. 南方农业学报,2022,53(12):3336-3345.
[24]张悦婧,桑鹤天,王涵琦,等. 植物对非生物胁迫系统性反应中信号传递的研究进展[J]. 植物学报,2024,59(1):122-133.
[25]祁伟亮,孙万仓,马骊. 活性氧参与调控植物生长发育和胁迫应激响应机理的研究进展[J]. 干旱地区农业研究,2021,39(3):69-81,193.
[26]Li M P,Kim C. Chloroplast ROS and stress signaling[J]. Plant Communications,2021,3(1):100264.
[27]Rizwan M,Ali S,Zia Ur Rehman M,et al. Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil[J]. Environmental Pollution,2019,248:358-367.
[28]杨林林,韩敏琦,高嘉,等. 小麦超氧化物歧化酶基因家族鉴定及盐胁迫下响应锌钾的表达分析[J]. 山东农业科学,2023,55(8):11-20.
[29]韩键,白云赫,朱旭东,等. 植物谷胱甘肽应答非生物胁迫的分子机制[J]. 分子植物育种,2020,18(5):1672-1680.
[30]Kareem H A,Adeel M,Azeem M,et al. Antagonistic impact on cadmium stress in alfalfa supplemented with nano-zinc oxide and biochar via upregulating metal detoxification[J]. Journal of Hazardous Materials,2023,443(Pt B):130309.
[31]刘兰英,吕新,陈丽华,等. 土壤镉胁迫对甘薯品质和镉、锌吸收的影响[J]. 福建农业学报,2019,34(3):344-351.
[32]陈旺,户少武,罗景升,等. 施氮、锌对镉污染小麦产量及籽粒锌、镉含量的影响[J]. 农业环境科学学报,2023,42(2):274-283.
[1]滕维超,刘少轩,刘新亮,等.不同种植模式对油茶成林土壤有机碳及养分特征的影响[J].江苏农业科学,2013,41(05):323.
Teng Weichao,et al.Influence of different planting modes on organic carbon and nutrient characteristics in soils of Camellia oleifera forest[J].Jiangsu Agricultural Sciences,2013,41(19):323.
[2]周乃富,谭晓风,袁军.林下养鸡对油茶林地土壤以及植株养分的影响[J].江苏农业科学,2014,42(08):341.
Zhou Naifu,et al.Effects of feeding chicken under Camellia oleifera woods on nutrient of soil and plant[J].Jiangsu Agricultural Sciences,2014,42(19):341.
[3]王立博,张婷,王敬力,等.油茶内生真菌DNA提取及SRAP反应体系的建立[J].江苏农业科学,2013,41(12):37.
Wang Libo,et al.Extraction of DNA from Camellia oleifera endophytic fungi and establishment of SRAP reaction system[J].Jiangsu Agricultural Sciences,2013,41(19):37.
[4]王华,胡锦珍,胡冬南,等.不同肥料对油茶林土壤微生物及酶活性的影响[J].江苏农业科学,2016,44(06):461.
Wang Hua,et al.Effects of different fertilization treatments on soil microorganisms and enzyme activities in Camellia oleifera forest[J].Jiangsu Agricultural Sciences,2016,44(19):461.
[5]周德明,艾芹,周国英.12种植物对油茶炭疽病菌和软腐病菌的抑制活性[J].江苏农业科学,2015,43(06):121.
Zhou Deming,et al.Inhibitory activity of 12 kinds of plants to Camellia anthrax and soft rot pathogen[J].Jiangsu Agricultural Sciences,2015,43(19):121.
[6]罗汉东,胡冬南,朱丛飞,等.不同施肥模式对油茶植株营养生长和土壤养分的影响[J].江苏农业科学,2016,44(08):272.
Luo Handong,et al.Effects of different fertilization modes on vegetative growth and soil nutrient of tea-oil tree[J].Jiangsu Agricultural Sciences,2016,44(19):272.
[7]艾佐佐,袁军,黄丽媛,等.磷对铝胁迫下油茶幼苗根冠比及根系形态的影响[J].江苏农业科学,2017,45(12):106.
Ai Zuozuo,et al.Effects of phosphorus on root/shoot ratio and root morphology of Camellia oleifera seedlings under aluminum toxicity[J].Jiangsu Agricultural Sciences,2017,45(19):106.
[8]黄文,陈颍卓,庄远红.油茶根际与非根际土壤养分含量和微生物数量的季节变化[J].江苏农业科学,2017,45(19):265.
Huang Wen,et al.Seasonal variation of soil nutrient contents and microbial quantity in rhizosphere and non-rhizosphere soil of camellia[J].Jiangsu Agricultural Sciences,2017,45(19):265.
[9]陈丽文.抗冻剂对低温下油茶的生理作用[J].江苏农业科学,2018,46(03):103.
Chen Liwen.Physiological effects of cryoprotectants on Camellia oleifera at low temperature[J].Jiangsu Agricultural Sciences,2018,46(19):103.
[10]詹孝慈,罗在柒,武忠亮,等.不同栽培基质对油茶容器苗生长和光合特性的影响[J].江苏农业科学,2018,46(21):123.
Zhan Xiaoci,et al.Effects of different cultural substrates on growth and photosynthetic characteristics of container seedlings of Camellia oleifera Abel.[J].Jiangsu Agricultural Sciences,2018,46(19):123.