|本期目录/Table of Contents|

[1]黄文,陈颍卓,庄远红.油茶根际与非根际土壤养分含量和微生物数量的季节变化[J].江苏农业科学,2017,45(19):265-270.
 Huang Wen,et al.Seasonal variation of soil nutrient contents and microbial quantity in rhizosphere and non-rhizosphere soil of camellia[J].Jiangsu Agricultural Sciences,2017,45(19):265-270.
点击复制

油茶根际与非根际土壤养分含量
和微生物数量的季节变化
(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第45卷
期数:
2017年19期
页码:
265-270
栏目:
资源与环境
出版日期:
2017-10-05

文章信息/Info

Title:
Seasonal variation of soil nutrient contents and microbial quantity in rhizosphere and non-rhizosphere soil of camellia
作者:
黄文 陈颍卓 庄远红
湖南第一师范学院,湖南长沙 410205
Author(s):
Huang Wenet al
关键词:
油茶根际与非根际土壤养分土壤微生物数量季节动态利用对策保护效应
Keywords:
-
分类号:
S794.402
DOI:
-
文献标志码:
A
摘要:
对不同季节油茶根际与非根际土壤养分含量和微生物数量的变化进行研究。结果表明:(1)由春季到冬季,油茶可溶性蛋白、可溶性糖、叶绿素、叶片氮和叶片磷含量呈先增加后降低趋势,大致表现为夏季>秋季>春季>冬季。(2)不同季节油茶根际与非根际土壤理化性质随季节变化趋势相一致,由春季到冬季油茶根际与非根际土壤pH值呈先降低后增加趋势,大致表现为冬季>春季>秋季>夏季,以夏季油茶根际与非根际土壤pH值最低。(3)不同季节油茶根际与非根际土壤养分含量和土壤微生物数量随季节变化趋势相一致,由春季到冬季,油茶根际与非根际土壤养分含量和微生物数量均呈先增加后降低趋势,大致表现为夏季>秋季>春季>冬季,局部有所波动,其中油茶根际土壤养分含量和微生物数量在夏季、秋季表现出了明显的“根际富集”。(4)不同季节油茶根际与非根际土壤微生物均以细菌最多,占微生物总数的90%以上,其次是放线菌、真菌,表明不同季节根际土壤对于不同微生物菌落有着不同的效果,但总体来说,油茶的根际养分的富集提高了微生物总数。(5)油茶根际、非根际土壤pH值与土壤养分含量、微生物数量达到显著或极显著负相关,土壤养分含量和土壤微生物数量之间也达到显著或极显著正相关,表明油茶根际和非根际土壤养分含量、微生物数量变化趋势基本保持一致,主要可以通过降低根际pH值提高根际养分含量,有利于对土壤养分的有效利用。
Abstract:
-

参考文献/References:

[1]Xiong Z G,Luo S L,He J. The software design of Camellia oleifera seed hyperspectral detection system[J]. Advanced Materials Research,2014,846-847:1076-1079.
[2]Jin X C. Bioactivities of water-soluble polysaccharides from fruit shell of Camellia oleifera Abel:antitumor and antioxidant activities[J]. Carbohydrate Polymers,2012,87(3):2198-2201.
[3]莫宝盈,易立飒,奚如春,等. 油茶叶片营养诊断分析样品适宜采集期研究[J]. 经济林研究,2013,31(1):13-19.
[4]邢益显,崔之益,李蕊萍,等. 蜡封技术在油茶种子贮藏中的应用[J]. 经济林研究,2014,32(3):167-170.
[5]Schmidt M W I,Torn M S,Abiven S,et al. Persistence of soil organic matter as an ecosystem property[J]. Nature,2011,478(7367):49-56.
[6]Paul E A. Soil microbiology,ecology and biochemistry[M]. 4th ed. New York:Academic Press,2014.
[7]Binkley D,Fisher R. Ecology and management of forest soils[M]. Hoboken,New Jersey,American:John Wiley & Sons,2012.
[8]Montes-Borrego M,Navas-Cortés J A,Landa B B. Linking microbial functional diversity of olive rhizosphere soil to management systems in commercial orchards in southern Spain[J]. Agriculture Ecosystems & Environment,2013,181(4):169-178.
[9]Qiu M,Li S,Zhou X,et al. De-coupling of root-microbiome associations followed by antagonist inoculation improves rhizosphere soil suppressiveness[J]. Biology and Fertility of Soils,2014,50(2):217-224.
[10]Philippot L,Raaijmakers J M,Lemanceau P,et al. Going back to the roots:the microbial ecology of the rhizosphere[J]. Nature Reviews Microbiology,2013,11(11):789-799.
[11]Cesco S,Mimmo T,Tonon G,et al. Plant-borne flavonoids released into the rhizosphere:impact on soil bio-activities related to plant nutrition. A review[J]. Biology and Fertility of Soils,2012,48(2):123-149.
[12]Chen Y H,Han W X,Tang L Y,et al. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate,soil and plant growth form[J]. Ecography,2013,36(2):178-184.
[13]Wu T G,Yu M K,Wang G G,et al. Leaf nitrogen and phosphorus stoichiometry across forty-two woody species in Southeast China[J]. Biochemical Systematics and Ecology,2012,44(10):255-263.
[14]Yergeau E,Bokhorst S,Kang S,et al. Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments[J]. The ISME Journal,2012,6(3):692-702.
[15]鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2000.
[16]Murchie E H,Niyogi K K. Manipulation of photoprotection to improve plant photosynthesis[J]. Plant Physiology,2011,155(1):86-92.
[17]Zelitch I. Photosynthesis,photorespiration,and plant productivity[M]. New York:Academic Press,1974:ⅩⅢ-ⅩⅣ.
[18]Mishra K B,Iannacone R,Petrozza A,et al. Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission[J]. Plant Science:an International Journal of Experimental Plant Biology,2012,182:79-86.
[19]Schansker G,Tóth S Z,Holzwarth A R,et al. Chlorophyll a fluorescence:beyond the limits of the Q(A) model[J]. Photosynthesis Research,2014,120(1/2):43-58.
[20]Peiffer J A,Spor A,Koren O,et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(16):6548-6553.
[21]Hinsinger P. Plant-induced changes in soil processes and properties[M]//Soil conditions and plant growth. UK:Blackwell Publishing Ltd,2013:323-365.
[22]Lang B,Rall B C,Scheu S,et al. Effects of environmental warming and drought on size-structured soil food webs[J]. Oikos,2014,123(10):1224-1233.
[23]李从娟,雷加强,徐新文,等. 树干径流对梭梭“肥岛”和“盐岛”效应的作用机制[J]. 生态学报,2012,32(15):4819-4826.
[24]Cotrufo M F,Wallenstein M D,Boot C M,et al. The Microbial Efficiency-Matrix Stabilization(MEMS) framework integrates plant litter decomposition with soil organic matter stabilization:do labile plant inputs form stable soil organic matter?[J]. Global Change Biology,2013,19(4):988-995.
[25]Lefevre G H,Hozalski R M,Novak P J. Root exudate enhanced contaminant desorption:an abiotic contribution to the rhizosphere effect[J]. Environmental Science & Technology,2013,47(20):11545-11553.
[26]Rosenvald K,Kuznetsova T,Ostonen I,et al. Rhizosphere effect and fine-root morphological adaptations in a chronosequence of silver birch stands on reclaimed oil shale post-mining areas[J]. Ecological Engineering,2011,37(7):1027-1034.

相似文献/References:

[1]滕维超,刘少轩,刘新亮,等.不同种植模式对油茶成林土壤有机碳及养分特征的影响[J].江苏农业科学,2013,41(05):323.
 Teng Weichao,et al.Influence of different planting modes on organic carbon and nutrient characteristics in soils of Camellia oleifera forest[J].Jiangsu Agricultural Sciences,2013,41(19):323.
[2]周乃富,谭晓风,袁军.林下养鸡对油茶林地土壤以及植株养分的影响[J].江苏农业科学,2014,42(08):341.
 Zhou Naifu,et al.Effects of feeding chicken under Camellia oleifera woods on nutrient of soil and plant[J].Jiangsu Agricultural Sciences,2014,42(19):341.
[3]王立博,张婷,王敬力,等.油茶内生真菌DNA提取及SRAP反应体系的建立[J].江苏农业科学,2013,41(12):37.
 Wang Libo,et al.Extraction of DNA from Camellia oleifera endophytic fungi and establishment of SRAP reaction system[J].Jiangsu Agricultural Sciences,2013,41(19):37.
[4]王华,胡锦珍,胡冬南,等.不同肥料对油茶林土壤微生物及酶活性的影响[J].江苏农业科学,2016,44(06):461.
 Wang Hua,et al.Effects of different fertilization treatments on soil microorganisms and enzyme activities in Camellia oleifera forest[J].Jiangsu Agricultural Sciences,2016,44(19):461.
[5]周德明,艾芹,周国英.12种植物对油茶炭疽病菌和软腐病菌的抑制活性[J].江苏农业科学,2015,43(06):121.
 Zhou Deming,et al.Inhibitory activity of 12 kinds of plants to Camellia anthrax and soft rot pathogen[J].Jiangsu Agricultural Sciences,2015,43(19):121.
[6]罗汉东,胡冬南,朱丛飞,等.不同施肥模式对油茶植株营养生长和土壤养分的影响[J].江苏农业科学,2016,44(08):272.
 Luo Handong,et al.Effects of different fertilization modes on vegetative growth and soil nutrient of tea-oil tree[J].Jiangsu Agricultural Sciences,2016,44(19):272.
[7]艾佐佐,袁军,黄丽媛,等.磷对铝胁迫下油茶幼苗根冠比及根系形态的影响[J].江苏农业科学,2017,45(12):106.
 Ai Zuozuo,et al.Effects of phosphorus on root/shoot ratio and root morphology of Camellia oleifera seedlings under aluminum toxicity[J].Jiangsu Agricultural Sciences,2017,45(19):106.
[8]陈丽文.抗冻剂对低温下油茶的生理作用[J].江苏农业科学,2018,46(03):103.
 Chen Liwen.Physiological effects of cryoprotectants on Camellia oleifera at low temperature[J].Jiangsu Agricultural Sciences,2018,46(19):103.
[9]詹孝慈,罗在柒,武忠亮,等.不同栽培基质对油茶容器苗生长和光合特性的影响[J].江苏农业科学,2018,46(21):123.
 Zhan Xiaoci,et al.Effects of different cultural substrates on growth and photosynthetic characteristics of container seedlings of Camellia oleifera Abel.[J].Jiangsu Agricultural Sciences,2018,46(19):123.
[10]王华,郭小敏,胡冬南.不同类型肥料对油茶幼林土壤微生物特性的影响[J].江苏农业科学,2019,47(07):252.
 Wang Hua,et al.Effects of different fertilization treatments on characteristics of soil microbial in Camellia oleifera young forest[J].Jiangsu Agricultural Sciences,2019,47(19):252.

备注/Memo

备注/Memo:
收稿日期:2016-03-29
基金项目:国家自然科学基金青年基金(编号:31400326)。
作者简介:黄文(1967—),女,湖南长沙人,教授,主要研究方向为环境生物技术。E-mail:Huang_wen1967@163.com。
更新日期/Last Update: 2017-10-05