[1]吴慧,马微,吴默涵,等. 喷施不同叶面肥对番茄产量和品质的影响[J]. 北方园艺,2015(9):154-157.
[2]Jin J F,Wang Z Q,He Q Y,et al. Genome-wide identification and expression analysis of the NAC transcription factor family in tomato (Solanum lycopersicum) during aluminum stress[J]. BMC Genomics,2020,21(1):288.
[3]杨佳敏,贺希格都楞,万家悦,等. 镉污染地区番茄品种的筛选及其抗氧化能力[J]. 生物工程学报,2021,37(1):242-252.
[4]贾邱颖,吴晓蕾,冀胜鑫,等. γ-氨基丁酸对番茄嫁接苗耐盐性的生理调控效应[J]. 植物营养与肥料学报,2021,27(1):122-134.
[5]陈微微,陈传奇,刘鹏,等. 荞麦和金荞麦根际土壤铝形态变化及对其生长的影响[J]. 水土保持学报,2007,21(1):176-179,192.
[6]段宏利,蒋凌雁,陈志坚,等. 铝胁迫对狗牙根根系生长和营养元素的影响[J]. 草地学报,2022,30(4):936-942.
[7]Liu H B,Zhu R,Shu K,et al. Aluminum stress signaling,response,and adaptive mechanisms in plants[J]. Plant Signaling & Behavior,2022,17(1):2057060.
[8]吴道铭,傅友强,于智卫,等. 我国南方红壤酸化和铝毒现状及防治[J]. 土壤,2013,45(4):577-584.
[9]肖家昶,郑开敏,马俊英,等. 外源NO对铝胁迫下西瓜幼苗生长及生理特性的影响[J]. 农业环境科学学报,2021,40(8):1650-1658.
[10]熊洁,丁戈,李书宇,等. 铝胁迫对不同耐铝油菜品种苗期生长发育和养分吸收的影响[J]. 华北农学报,2020,35(6):165-171.
[11]周小华,周泽仪,李昆志. 铝胁迫下外源抗坏血酸对水稻幼苗抗氧化性能的影响[J]. 核农学报,2020,34(10):2368-2375.
[12]张江周,李宝深,吴良泉. 香蕉对低pH和铝毒胁迫的响应[J]. 热带作物学报,2022,43(4):788-797.
[13]Nogueirol R C,Monteiro F A,Grato P L,et al. Tropical soils with high aluminum concentrations cause oxidative stress in two tomato genotypes[J]. Environmental Monitoring and Assessment,2015,187(3):73.
[14]周小华,李昆志,赵峥,等. 外源抗坏血酸对水稻抗铝生理指标的影响[J]. 热带作物学报,2021,42(3):769-776.
[15]周小华,周泽仪,李昆志. 外源抗坏血酸缓解水稻幼苗的铝胁迫效应[J]. 广西植物,2020,40(4):526-535.
[16]蒋思丝. 抗坏血酸对不同耐铝性小麦基因型铝毒胁迫的缓解作用及其机理研究[D]. 杭州:浙江大学,2011.
[17]徐维杰. 外源抗坏血酸(AsA)对小麦铬Cr6+毒害的缓解效应及其机理[D]. 南京:南京农业大学,2017.
[18]常云霞,徐克东,刘彬,等. 外源抗坏血酸对镉毒害小麦幼苗的缓解作用[J]. 麦类作物学报,2017,37(2):246-252.
[19]郭天荣. 外源抗坏血酸对铝毒害大麦幼苗的缓解效应[J]. 麦类作物学报,2012,32(5):895-899.
[20]周铎航,陈艳丽,王敏,等. 外源抗坏血酸对网纹甜瓜抗早衰和果实品质的影响[J]. 种子,2022,41(6):84-88,96.
[21]王龙,樊婕,魏畅,等. 外源抗坏血酸对铜胁迫菊苣幼苗生长的缓解效应[J]. 草业学报,2021,30(4):150-159.
[22]郭三妮. 外源抗坏血酸对干旱胁迫下马铃薯光合荧光特性的影响[D]. 张家口:河北北方学院,2019.
[23]冉国栋. 外源抗坏血酸对Ca(NO3)2胁迫下番茄幼苗生理特性的影响[J]. 青海农林科技,2015(3):17-20.
[24]陈娇,李芬芳,李奕星,等. 外源抗坏血酸对香蕉常温后熟期果实品质的影响[J]. 中国南方果树,2020,49(1):56-60.
[25]侯晓婉,鹿志伟,谷会,等. 外源抗坏血酸处理对采后菠萝黑心病发生和果实品质的影响[J]. 热带作物学报,2018,39(10):2014-2020.
[26]王静. 外源抗坏血酸(AsA)对采后猕猴桃果实生理和品质的影响[J]. 陕西农业科学,2015,61(9):37-41.
[27]孙宁静,范灵姣,唐志鹏,等. 外源抗坏血酸对牛心柿的保鲜效应研究[C]//中国园艺学会,中国农业科学院蔬菜花卉研究所.中国园艺学会2014年学术年会论文摘要集,2014:68.
[28]董乐. 外源抗坏血酸对龙眼保鲜效果的影响[J]. 浙江农业科学,2012,53(11):1557-1562.
[29]刘锴栋,敬国兴,袁长春,等. 外源抗坏血酸对圣女果采后生理和抗氧化活性的影响[J]. 热带作物学报,2012,33(10):1851-1855.
[30]Kopecká R,Kameniarová M,Cˇern M,et al. Abiotic stress in crop production[J]. International Journal of Molecular Sciences,2023,24(7):6603.
[31]马雪,胡亚哲. 细胞凋亡和丙二醛在长时间大强度运动模型大鼠骨骼肌中的表达[J]. 中国组织工程研究,2018,22(12):1928-1933.
[32]张启雷,刘强,高辉,等. 内源抗坏血酸对水稻种子萌发及幼苗生长的影响[J]. 热带亚热带植物学报,2016,24(3):273-279.
[33]李艺寒,陈玉童,刘芯邑,等. 外源抗坏血酸对棉花种子萌发耐冷性的影响[J]. 种子,2019,38(3):77-80.
[34]欧成明,赵美琦,孙铭,等. 抗坏血酸和水杨酸丸衣对NaCl胁迫下紫花苜蓿种子发芽特性的影响[J]. 草业学报,2022,31(4):93-101.
[35]Saeidi-Sar S,Abbaspour H,Afshari H,et al. Effects of ascorbic acid and gibberellin A3 on alleviation of salt stress in common bean (Phaseolus vulgaris L.) seedlings[J]. Acta Physiologiae Plantarum,2013,35(3):667-677.
[36]Gallie D R. L-ascorbic acid:a multifunctional molecule supporting plant growth and development[J]. Scientifica,2013,2013:795964.
[37]Gao M F,Sun H,Shi M J,et al. 2-keto-L-gulonic acid improved the salt stress resistance of non-heading Chinese cabbage by increasing L-ascorbic acid accumulation[J]. Frontiers in Plant Science,2021,12:697184.
[38]Jin X Q,Liu T,Xu J J,et al. Exogenous GABA enhances muskmelon tolerance to salinity-alkalinity stress by regulating redox balance and chlorophyll biosynthesis[J]. BMC Plant Biology,2019,19(1):48.
[39]Gallie D R.The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth[J]. Journal of Experimental Botany,2013,64(2):433-443.
[40]Xiao M G,Li Z X,Zhu L,et al. The multiple roles of ascorbate in the abiotic stress response of plants:antioxidant,cofactor,and regulator[J]. Frontiers in Plant Science,2021,12:598173.
[41]Venkatesh J,Park S W.Role of L-ascorbate in alleviating abiotic stresses in crop plants[J]. Botanical Studies,2014,55(1):38.
[1]何从亮,毛久庚,甘小虎,等.玻璃温室番茄长季节基质袋栽培技术[J].江苏农业科学,2013,41(04):158.
[2]李永灿,余文贵,陈怀谷,等.番茄灰霉病菌产毒条件优化[J].江苏农业科学,2013,41(05):94.
Li Yongcan,et al.Optimization of toxigenic conditions of tomato Botrytis cinerea[J].Jiangsu Agricultural Sciences,2013,41(19):94.
[3]赵秋月,甘潇,张广臣.Na2CO3胁迫对番茄幼苗生长的影响[J].江苏农业科学,2013,41(05):128.
Zhao Qiuyue,et al.Effect of Na2CO3 stress on growth of tomato seedlings[J].Jiangsu Agricultural Sciences,2013,41(19):128.
[4]耿德刚,徐俊伟,戈振超,等.温室大棚番茄滴灌试验研究及效益分析[J].江苏农业科学,2013,41(05):132.
Geng Degang,et al.Drip irrigation experimental and benefit analysis on greenhouse tomato[J].Jiangsu Agricultural Sciences,2013,41(19):132.
[5]杜中平,聂书明.不同配方基质对番茄生长特性、光合特性及产量的影响[J].江苏农业科学,2013,41(05):138.
Du Zhongping,et al.Effects of different substrates on growth,photosynthetic characteristics and yield of tomato[J].Jiangsu Agricultural Sciences,2013,41(19):138.
[6]赵河,毛秀杰,叶景学.抗叶霉病不同基因型番茄的光合特性[J].江苏农业科学,2014,42(11):185.
Zhao He,et al(8).Photosynthetic characteristics of different genotypes of tomato with resistance to leaf mold[J].Jiangsu Agricultural Sciences,2014,42(19):185.
[7]陈素娟,孙娜娜.不同基质配比对番茄秧苗生长的影响[J].江苏农业科学,2013,41(06):128.
Chen Sujuan,et al.Effect of different substrate compositions on growth of tomato seedling[J].Jiangsu Agricultural Sciences,2013,41(19):128.
[8]孙禛禛,吴秋霞,温新宇,等.转反义LetAPX基因番茄抗氧化酶活性在苗期、花期、果期的变化[J].江苏农业科学,2015,43(12):188.
Sun Zhenzhen,et al.Study on antioxidant enzymes activity during seedling,flowering and fruiting of tomato with antisense LetAPX gene[J].Jiangsu Agricultural Sciences,2015,43(19):188.
[9]李晓慧,张恩让,何玉安,等.亚高温及外源物质调节下番茄的生理响应[J].江苏农业科学,2013,41(07):135.
Li Xiaohui,et al.Physiological response of tomato under the regulation of sub-high temperature and exogenous substances[J].Jiangsu Agricultural Sciences,2013,41(19):135.
[10]李建宏,张楠,张泽,等.番茄红素提取与测定方法的优化[J].江苏农业科学,2013,41(08):259.
Li Jianhong,et al.Optimization of lycopene extraction and determination method[J].Jiangsu Agricultural Sciences,2013,41(19):259.