[1]张敏敏,裴怀弟. 不同提取方法对甘肃紫斑牡丹籽油品质的影响[J]. 寒旱农业科学,2022,1(12):245-248.
[2]王卫成,贺欢,杨馥霞,等. 甘肃省紫斑牡丹种业现状及其发展对策[J]. 甘肃农业科技,2022,53(3):12-14.
[3]彭腾腾,范彬,石晓峰,等. 紫斑牡丹的化学成分、活性与开发利用研究进展[J]. 天然产物研究与开发,2024,36(4):717-735.
[4]邓刚. 紫斑牡丹苗木培育及病虫害防治技术[J]. 世界热带农业信息,2020(12):32-33.
[5]王志永. 试论油用牡丹特性及果树下种植管理技术[J]. 农业与技术,2020,40(21):97-98.
[6]张永强,马艳芳,郭子超,等. 牡丹品种灰霉病抗性评价[J]. 甘肃林业科技,2022,47(2):67-69.
[7]李志东. 紫斑牡丹主要病虫害及其综合防治技术[J]. 甘肃林业科技,2002,27(3):56-57.
[8]Williamson B,Tudzynski B,Tudzynski P,et al. Botrytis cinerea:the cause of grey mould disease[J]. Molecular Plant Pathology,2007,8(5):561-580.
[9]Dean R,van Kan J A L,Pretorius Z A,et al. The Top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology,2012,13(4):414-430.
[10]杨瑞先,刘萍,王祖华,等. 洛阳市牡丹灰霉病病原菌的鉴定[J]. 植物保护学报,2017,44(4):623-629.
[11]薛杰,郭霞,马书燕,等. 菏泽牡丹主要病虫害的发生与防治[J]. 林业实用技术,2005(4):26-28.
[12]刘烨,陈佩丽,黄娅,等. 恩施地区牡丹灰霉病的发生与防治试验研究[J]. 现代农业科技,2012(4):195,198.
[13]Muoz G,Campos F,Salgado D,et al. Molecular identification of Botrytis cinerea,Botrytis paeoniae and Botrytis pseudocinerea associated with gray mould disease in peonies (Paeonia lactiflora Pall.) in Southern Chile[J]. Revista Iberoamericana de Micologia,2016,33(1):43-47.
[14]Garfinkel A R,Lorenzini M,Zapparoli G,et al. Botrytis euroamericana,a new species from peony and grape in North America and Europe[J]. Mycologia,2017,109(3):495-507.
[15]杨瑞先,刘萍,方站民,等. 牡丹病害研究现状及展望[J]. 河南农业科学,2010(11):138-143.
[16]杨瑞先,姬俊华,王祖华,等. 牡丹根部内生细菌的分离鉴定及脂肽类物质的拮抗活性研究[J]. 微生物学通报,2015,42(6):1081-1088.
[17]Frey M,Schullehner K,Dick R,et al. Benzoxazinoid biosynthesis,a model for evolution of secondary metabolic pathways in plants[J]. Phytochemistry,2009,70(15/16):1645-1651.
[18]Zhao D Q,Gong S J,Hao Z J,et al. Identification of miRNAs responsive to Botrytis cinerea in herbaceous peony (Paeonia lactiflora Pall.) by high-throughput sequencing[J]. Genes,2015,6(3):918-934.
[19]Gong S J,Hao Z J,Meng J S,et al. Digital gene expression analysis to screen disease resistance-relevant genes from leaves of herbaceous peony (Paeonia lactiflora Pall.) infected by Botrytis cinerea[J]. PLoS One,2015,10(7):e0133305.
[20]Gao P H,Zhang H,Yan H J,et al. RcTGA1 and glucosinolate biosynthesis pathway involvement in the defence of rose against the necrotrophic fungus Botrytis cinerea[J]. BMC Plant Biology,2021,21(1):223.
[21]Chai N,Xu J,Zuo R M,et al. Metabolic and transcriptomic profiling of Lilium leaves infected with Botrytis elliptica reveals different stages of plant defense mechanisms[J]. Frontiers in Plant Science,2021,12:730620.
[22]Breeze E. 97 shades of gray:genetic interactions of the gray mold,Botrytis cinerea,with wild and domesticated tomato[J]. The Plant Cell,2019,31(2):280-281.
[23]张婷婷,谭永强,刘莹,等. 盐胁迫下转DcCIPK24拟南芥的转录组比较分析[J]. 广东农业科学,2023,50(10):75-84.
[24]Grabherr M G,Haas B J,Yassour M,et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology,2011,29:644-652.
[25]Altschul S F,Madden T L,Schffer A A,et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs[J]. Nucleic Acids Research,1997,25(17):3389-3402.
[26]Boeckmann B,Bairoch A,Apweiler R,et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003[J]. Nucleic Acids Research,2003,31(1):365-370.
[27]Koonin E V,Fedorova N D,Jackson J D,et al. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes[J]. Genome Biology,2004,5(2):R7.
[28]Kanehisa M,Araki M,Goto S,et al. KEGG for linking genomes to life and the environment[J]. Nucleic Acids Research,2008,36:D480-D484.
[29]Trapnell C,Williams B A,Pertea G,et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nature Biotechnology,2010,28:511-515.
[30]方献平,和雅妮,奚晓军,等. 多组学技术揭示葡萄叶片响应灰葡萄孢菌侵染的抗性机制[J]. 浙江大学学报(农业与生命科学版),2019,45(3):306-316.
[31]王春明,郭建国,漆永红,等. 葡萄叶片叶绿素质量分数与其霜霉病抗性的关系[J]. 西北农业学报,2016,25(3):458-464.
[32]胡永静,叶欣悦,须文. 折耳根提取液对番茄灰霉病菌的抑菌活性分析[J]. 蔬菜,2022(11):44-49.
[33]缪福俊,安曼云,华梅,等. 诱抗剂BTH对滇牡丹3种主要病害的诱抗研究[J]. 西部林业科学,2017,46(3):116-120.
[34]杜正刚,田溪. 天水市日光温室番茄灰霉病发生规律调查[J]. 农业工程技术(温室园艺),2011(11):58-60.
[35]马艳芳,赵晓阳,朱惠英,等. 牡丹灰霉病孢子扩散动态及发病因子关系[J]. 林业科技通讯,2022(5):69-70.
[36]罗长维,陈友. 凤丹灰霉病病原鉴定与发病条件研究[J]. 河南农业科学,2018,47(8):78-82.
[37]熊强强,魏雪娇,施翔,等. 多层组学在植物逆境及育种中的研究进展[J]. 江西农业大学学报,2018,40(6):1197-1206.
[38]王瑛,李金霞. 代谢组学技术在植物生态学研究中的应用[J]. 草业科学,2018,35(10):2354-2372.
[39]陈宇春.‘月月粉’响应灰霉菌侵染的转录组与代谢组分析[D]. 昆明:云南大学,2021:71-77.
[40]徐乾坤. 水稻类病斑基因LML11的图位克隆与功能分析[D]. 重庆:西南大学,2021:72-78.
[41]刘海娇,徐杰,左登鸿,等. 茼蒿水浸液和挥发物对三七根腐病菌的抑制活性及其抑菌物质分析[J]. 植物保护,2023,49(2):206-214.
[42]郭小磊,康明丽. 草莓采后灰霉病控制研究进展[J]. 保鲜与加工,2016,16(2):108-112.
[43]刘建新,刘瑞瑞,刘秀丽,等. 盐碱胁迫下外源硫化氢对裸燕麦叶片氨基酸代谢过程的影响[J]. 草业学报,2023,32(2):119-130.
[44]任文斌,王倩,李峰,等. F型小麦雄性不育系和保持系花药转录组学与代谢组学分析[J/OL]. 分子植物育种,2023:1-14( 2023-05-17)[2023-11-02]. https://kns.cnki.net/kcms/detail/46.1068.S.20230517.1117.018.html.
[45]朱安婷,蒋友武,谢国生,等. 外源聚γ-谷氨酸对水稻幼苗耐旱性和渗透调节的影响[J]. 核农学报,2010,24(6):1269-1273,1279.
[46]邓凤飞,杨双龙,龚明.细胞信号分子对非生物胁迫下植物脯氨酸代谢的调控[J]. 植物生理学报,2015(10):1573-1582.
[47]杨佳丽,荆志怀,张星,等. L-谷氨酸对苹果果实抗氧化能力的影响[J]. 食品工业,2020,41(11):213-216.
[48]林海涛,史衍玺. 铅、镉胁迫对茶树根系分泌有机酸的影响[J]. 山东农业科学,2005,37(2):32-34.
[49]曹继璇. GSNOR在GABA诱导番茄果实抗灰霉病中的作用研究[D]. 泰安:山东农业大学,2021:1-3.
[50]毛常丽,李玲,杨湉,等. 橡胶树‘云研77-4’无性系幼苗低温胁迫后的代谢组学分析[J/OL]. 分子植物育种,2022:1-16(2022-03-24)[2023-11-02]. https://kns.cnki.net/kcms/detail/46.1068.S.20220322.2041.012.html.
[51]Posakony J J,Ferré-DAmaré A R. Glucosamine and glucosamine-6-phosphate derivatives:catalytic cofactor analogues for the glmS ribozyme[J]. The Journal of Organic Chemistry,2013,78(10):4730-4743.
[52]Balmer A,Pastor V,Glauser G,et al. Tricarboxylates induce defense priming against bacteria in Arabidopsis thaliana[J]. Frontiers in Plant Science,2018,9:1221.
[53]李俊伟,刘景辉,赵宝平,等. 盐碱胁迫下燕麦叶片代谢组差异分析[J]. 草业科学,2023,40(10):2607-2618.
[54]张志东,段兴鹏,周玉梅,等. 大丽轮枝菌侵染陆地棉早期的转录组分析[J]. 棉花学报,2017,29(3):253-260.
[1]孙铭,高丹丹,鞠志新.紫斑牡丹杂交授粉后胚珠的形态学观察[J].江苏农业科学,2014,42(08):169.
Sun Ming,et al.Morphological observation of Paeonia papaveracea ovule after pollination[J].Jiangsu Agricultural Sciences,2014,42(21):169.
[2]骆美蓉,江明锋,张鹏,等.山羊分子生物学研究进展[J].江苏农业科学,2014,42(01):46.
Luo Meirong,et al.Research progress of molecular biology of goat[J].Jiangsu Agricultural Sciences,2014,42(21):46.
[3]章琼,蒋高中,李冰.水产动物对氨氮胁迫响应的转录组分析研究进展[J].江苏农业科学,2015,43(03):227.
Zhang Qiong,et al.Research progress on transcriptome analyses of aquatic animals in response to ammonia-N stress[J].Jiangsu Agricultural Sciences,2015,43(21):227.
[4]刘行,李成忠,汤庚国,等.紫斑牡丹种子的萌发特性[J].江苏农业科学,2016,44(08):289.
Liu Hang,et al.Study on germination characteristics of Paeonia rockii[J].Jiangsu Agricultural Sciences,2016,44(21):289.
[5]张高阳,邓接楼,柯维忠,等.红麻肌醇加氧酶基因的分离及表达分析[J].江苏农业科学,2017,45(18):48.
Zhang Gaoyang,et al.Isolation and expression analysis of inositol oxygenase gene in kenaf[J].Jiangsu Agricultural Sciences,2017,45(21):48.
[6]方辉,蒋胜理,曲俊杰,等.基于高通量测序的野生毛葡萄转录组SSR信息分析[J].江苏农业科学,2017,45(20):64.
Fang Hui,et al.SSR information analysis of Vitis quinquangularis Rehd transcriptome based on high-throughput sequencing[J].Jiangsu Agricultural Sciences,2017,45(21):64.
[7]欧奇,李鑫,田洋,等.多油辣木转录组高通量测序及分析[J].江苏农业科学,2017,45(20):71.
Ou Qi,et al.High-throughput sequencing and analysis of transcriptome of Moringa oleifera Lam.[J].Jiangsu Agricultural Sciences,2017,45(21):71.
[8]虞杭,张得芳,樊光辉,等.枸杞转录组SSR分布特征分析及其与基因组SSR分布特征的比较[J].江苏农业科学,2018,46(14):24.
Yu Hang,et al.Characteristic analysis of transcriptome SSR distribution of Lycium barbarum and its comparison with genomic SSR distribution[J].Jiangsu Agricultural Sciences,2018,46(21):24.
[9]陶仕珍,田斌,孙正海,等.绣球藤叶片转录组分析及SSR引物开发[J].江苏农业科学,2018,46(18):43.
Tao Shizhen,et al.Transcriptome analysis and SSR primer development of Clematis montana leaves[J].Jiangsu Agricultural Sciences,2018,46(21):43.
[10]王传聪,唐修阳,项杰,等.罗氏沼虾转录组SSR标记信息分析[J].江苏农业科学,2018,46(22):56.
Wang Chuancong,et al.Analysis of SSR markers in transcriptome of Macrobrachium rosenbergii[J].Jiangsu Agricultural Sciences,2018,46(21):56.