|本期目录/Table of Contents|

[1]崔晓霞,马倩,刘学勤,等.壳寡糖对PEG胁迫下大豆种子萌发及幼苗生理指标的影响[J].江苏农业科学,2025,53(1):45-51.
 Cui Xiaoxia,et al.Effects of chitooligosaccharides on seed germination and seedling physiological indices of soybean under PEG stress[J].Jiangsu Agricultural Sciences,2025,53(1):45-51.
点击复制

壳寡糖对PEG胁迫下大豆种子萌发及幼苗生理指标的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第53卷
期数:
2025年第1期
页码:
45-51
栏目:
遗传育种与耕作栽培
出版日期:
2025-01-05

文章信息/Info

Title:
Effects of chitooligosaccharides on seed germination and seedling physiological indices of soybean under PEG stress
作者:
崔晓霞马倩刘学勤殷从飞王海棠赵艳岭
江苏农林职业技术学院农学园艺学院,江苏镇江 212400
Author(s):
Cui Xiaoxiaet al
关键词:
大豆壳寡糖PEG胁迫种子萌发幼苗生理指标
Keywords:
-
分类号:
S565.101
DOI:
-
文献标志码:
A
摘要:
以大豆品种Williams 82为试验材料,在10%聚乙二醇(PEG)模拟干旱胁迫下,分析不同浓度壳寡糖(COS)溶液(5、25、50、100、200 mg/L)在进行浸种和灌根处理后,对大豆种子的萌发以及幼苗生理指标的影响,探寻缓解大豆干旱胁迫的最适COS浓度。结果显示,10% PEG模拟干旱胁迫下,大豆种子的发芽势、发芽率、种子胚芽长以及幼苗根长较对照明显降低,幼苗叶片中超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)的活性也受到严重抑制,游离脯氨酸和丙二醛含量则明显升高。而外源施加较低浓度的COS处理后,可有效促进大豆种子的萌发和幼苗的生长,提高叶片中抗氧化酶SOD、POD、CAT和APX的活性,并降低游离脯氨酸、丙二醛含量。结果表明,100 mg/L的外源COS溶液可最有效地减轻PEG胁迫对种子萌发和幼苗生长的抑制,降低大豆幼苗叶片氧化损伤,提高大豆的抗旱能力。
Abstract:
-

参考文献/References:

[1]Kim S L,Berhow M A,Kim J T,et al. Evaluation of soyasaponin,isoflavone,protein,lipid,and free sugar accumulation in developing soybean seeds[J]. Journal of Agricultural and Food Chemistry,2006,54(26):10003-10010.
[2]Sakthivelu G,Akitha Devi M K,Giridhar P,et al. Isoflavone composition,phenol content,and antioxidant activity of soybean seeds from India and Bulgaria[J]. Journal of Agricultural and Food Chemistry,2008,56(6):2090-2095.
[3]栾立明,郭庆海. 中国大豆产业国际竞争力现状与提升途径[J]. 农业经济问题,2010,31(2):99-103.
[4]何秀荣,孙宾成,杨树果,等. 大豆目标价格政策执行中的主要问题和政策建议[J]. 大豆科技,2015(5):1-5,55.
[5]Kaya M D,Oku G,Atak M,et al. Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.)[J]. European Journal of Agronomy,2006,24(4):291-295.
[6]王兴荣,刘章雄,张彦军,等. 大豆种质资源不同生育时期抗旱性鉴定评价[J]. 植物遗传资源学报,2021,22(6):1582-1594.
[7]李盛有,孙旭刚,王昌陵,等. 不同嫁接方式下大豆对干旱胁迫的响应[J]. 中国油料作物学报,2020,42(4):632-639.
[8]Le D T,Nishiyama R,Watanabe Y,et al. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis[J]. PLoS One,2012,7(11):e49522.
[9]杜艳丽,张兆宁,李思琪,等. 黑龙江地区主栽大豆品种萌发期耐旱性综合鉴定及评价[J]. 黑龙江八一农垦大学学报,2022,34(4):1-8,22.
[10]郑世英,郑晓彤,耿建芬,等. 硅对干旱胁迫下野生大豆幼苗生长和生理特性的影响[J]. 大豆科学,2018,37(2):263-267.
[11]赵振宁,赵宝勰. 不同大豆品种在萌发期对干旱胁迫的生理响应及抗旱性评价[J]. 干旱地区农业研究,2018,36(2):131-136.
[12]张靓,刘添祎,冀采凤,等. 大豆E3连接酶基因GmPLR-2的克隆及抗旱功能鉴定[J]. 中国油料作物学报,2020,42(5):835-842.
[13]Xie P D,Yang Y Y,Gong D,et al. Chitooligosaccharide maintained cell membrane integrity by regulating reactive oxygen species homeostasis at wounds of potato tubers during healing[J]. Antioxidants,2022,11(9):1791.
[14]狄文伟. 壳寡糖在蔬菜生产上的应用[J]. 北方园艺,2016(8):54-55.
[15]Mohammedi Z. Chitosan and chitosan oligosaccharides:applications in medicine,agriculture and biotechnology[J]. International Journal of Bioorganic Chemistry,2017,2(3):102-106.
[16]Naveed M,Phil L,Sohail M,et al. Chitosan oligosaccharide (COS):an overview[J]. International Journal of Biological Macromolecules,2019,129:827-843.
[17]邹平. 特定乙酰度壳寡糖诱导小麦抗盐作用及其机理研究[D]. 青岛:中国科学院研究生院(海洋研究所),2015:81-82.
[18]刘俊杰,贾晓晨,张春光,等. 多组学技术揭示寡糖诱导植物免疫预警机制[C]//2020年糖科学青年科技论坛摘要集.北京:中国化学会.2020:31.
[19]骆训光. 壳寡糖防控马铃薯晚疫病的机制与应用研究[D]. 重庆:重庆大学,2022:29-30.
[20]王小蒙,梁富忠,叶坤国. 海藻精和壳寡糖对水稻种发芽及幼苗生长的影响[J]. 中国农技推广,2022,38(3):84-87.
[21]赵肖琼,梁泰帅,张恒慧. 壳寡糖对PEG胁迫下小麦种子萌发、幼苗生长及渗透调节物质的影响[J]. 种子,2020,39(2):91-95.
[22]尹雅洁,张宗杰,夏险,等. 壳寡糖对水稻幼苗生长及抗逆性影响[J]. 生物学杂志,2021,38(1):77-80.
[23]孙君艳,李淑梅,仝胜利. 干旱胁迫下壳寡糖对花生幼苗叶片光合特性及保护酶的影响[J]. 江苏农业科学,2015,43(6):98-100.
[24]李艳,曾秀娥,李洪艳,等. 壳寡糖对干旱胁迫下油菜叶片生理指标的影响[J]. 生态学杂志,2012,31(12):3080-3085.
[25]罗晓峰,代宇佳,宋艳,等. 三种植物生长调节剂对大豆生长发育及产量的影响[J]. 核农学报,2021,35(4):980-988.
[26]Costales D,Falcón A B,Nápoles M C,et al. Effect of chitosaccharides in nodulation and growth in vitro of inoculated soybean[J]. American Journal of Plant Sciences,2016,7(9):1380-1391.
[27]Tang W Z,Lei X T,Liu X Q,et al. Nutritional improvement of bean sprouts by using chitooligosaccharide as an elicitor in germination of soybean (Glycine max L.)[J]. Applied Sciences,2021,11(16):7695.
[28]李小方,张志良.植物生理学实验指导[M]. 5版.北京:高等教育出版社,2016:86-88,193,203,211.
[29]Singh T N,Aspinall D,Paleg L G. Proline accumulation and varietal adaptability to drought in barley:a potential metabolic measure of drought resistance[J]. Nature New Biology,1972,236(67):188-190.
[30]严美玲,李向东,林英杰,等. 苗期干旱胁迫对不同抗旱花生品种生理特性、产量和品质的影响[J]. 作物学报,2007,33(1):113-119.
[31]Gill S S,Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry,2010,48(12):909-930.
[32]喻泽莉,何平,张春平,等. 干旱胁迫对决明种子萌发及幼苗生理特性的影响[J]. 西南大学学报(自然科学版),2012,34(2):39-44.
[33]王鹏,侯思宇,温宏伟,等. 干旱胁迫对滞绿大豆种子萌发的影响及芽期抗旱性评价[J]. 大豆科学,2021,40(1):68-74.
[34]尚宏芹,刘兴坦. 表油菜素内酯对汞胁迫下小麦幼苗抗氧化系统的影响[J]. 核农学报,2016,30(11):2258-2264.
[35]Gomes F P,Oliva M A,Mielke M S,et al. Osmotic adjustment,proline accumulation and cell membrane stability in leaves of Cocos nucifera submitted to drought stress[J]. Scientia Horticulturae,2010,126(3):379-384.
[36]Yousfi N,Slama I,Ghnaya T,et al. Effects of water deficit stress on growth,water relations and osmolyte accumulation in Medicago truncatula and M. laciniata populations[J]. Comptes Rendus Biologies,2010,333(3):205-213.
[37]赵燕昊,曹跃芬,孙威怡,等. 小麦抗旱研究进展[J]. 植物生理学报,2016,52(12):1795-1803.
[38]徐溶蔓,侯典云,李春霞,等. 外源壳寡糖喷施对干旱胁迫下科大绿2号幼苗生理特性及产量的影响[J]. 现代园艺,2023,46(23):1-6.
[39]徐婷. 干旱胁迫下玉米幼苗对外源壳寡糖处理的生理响应[J]. 安徽农学通报,2022,28(3):24-27.
[40]赵小湾,宋明璇,刘金华,等. 干旱胁迫下壳寡糖对番茄幼苗生理指标的影响[J]. 中国土壤与肥料,2023(1):163-168.

相似文献/References:

[1]赵银月,耿智德,王铁军.云南省大豆地方种质资源的籽粒特征特性分析及评价[J].江苏农业科学,2013,41(04):62.
[2]朱倩,谢飒英,谢三刚,等.稀土LaCl3对大豆叶绿素含量及a/b值的影响[J].江苏农业科学,2013,41(06):81.
 Zhu Qian,et al.Effect of LaCl3 on chlorophyll content and the ratio of chlorophyll a to chlorophyll b in soybean[J].Jiangsu Agricultural Sciences,2013,41(1):81.
[3]王宗标,王幸,徐泽俊,等.植物保健剂对大豆产量及农艺性状的影响[J].江苏农业科学,2013,41(06):85.
 Wang Zongbiao,et al.Effects of plant health care agent on yield and agronomic traits of soybean[J].Jiangsu Agricultural Sciences,2013,41(1):85.
[4]徐明坤,胥义.冷冻干燥法制备快速制浆半成品大豆的工艺条件优化[J].江苏农业科学,2013,41(06):216.
 Xu Mingkun,et al.Optimization of technological conditions for preparation of semi-finished soybean products for quick soybean milk production by freeze-drying method[J].Jiangsu Agricultural Sciences,2013,41(1):216.
[5]陈新,袁星星,崔晓艳,等.江苏省大豆生产发展布局与未来发展方向[J].江苏农业科学,2013,41(08):5.
 Chen Xin,et al.Layout and future direction of soybean production development in Jiangsu Province[J].Jiangsu Agricultural Sciences,2013,41(1):5.
[6]顾丽嫱.壳寡糖对番茄灰霉病菌的抑制作用[J].江苏农业科学,2014,42(09):115.
 Gu Liqiang.Inhibition of chitosan oligosaccharide against Botrytis cinerea[J].Jiangsu Agricultural Sciences,2014,42(1):115.
[7]李丽丽,郎敬,杨洪一,等.大豆根际解磷菌的鉴定[J].江苏农业科学,2014,42(08):363.
 Li Lili,et al.Identification of phosphate-solubilizing bacteria in rhizosphere of soybean[J].Jiangsu Agricultural Sciences,2014,42(1):363.
[8]孙彦坤,于越,任红玉,等.不同生育期喷施稀土镧和铈对大豆膜透性的Hormesis效应[J].江苏农业科学,2016,44(03):88.
 Sun Yankun,et al.Hormetic effect of lanthanum and cerium on soybean membrane permeability in different growth period[J].Jiangsu Agricultural Sciences,2016,44(1):88.
[9]马绍华,易福金,王学君.中国大豆进口市场势力综合分析[J].江苏农业科学,2016,44(03):527.
 Ma Shaohua,et al.Comprehensive analysis of Chinas soybean import market forces[J].Jiangsu Agricultural Sciences,2016,44(1):527.
[10]刘志良.丘陵红壤喷施钼肥对大豆产量及经济性状的影响[J].江苏农业科学,2013,41(12):77.
 Liu Zhiliang.Effects of molybdate fertilizer on yield and economic traits of soybean in red soil hilly area[J].Jiangsu Agricultural Sciences,2013,41(1):77.

备注/Memo

备注/Memo:
收稿日期:2024-02-28
基金项目:国家自然科学基金(编号:32301776);江苏农林职业技术学院院级科技项目(编号:2020kj007)。
作者简介:崔晓霞(1989—),女,甘肃定西人,博士,讲师,主要从事大豆遗传育种研究。E-mail:cuixiaoxia7@163.com。
更新日期/Last Update: 2025-01-05