[1]Mittler R. Abiotic stress,the field environment and stress combination[J]. Trends in Plant Science,2006,11(1):15-19.
[2]张海鑫. 多毛番茄CDPK基因家族分析及胁迫响应分析[D]. 哈尔滨:东北农业大学,2022:1-7.
[3]王强,王柏柯,刘会芳,等. 蛋白质组学在番茄非生物逆境胁迫中的研究进展[J]. 新疆农业科学,2021,58(10):1829-1837.
[4]柴畅. 番茄CIPK8基因在低温、盐和干旱胁迫下功能研究[D]. 哈尔滨:东北农业大学,2021:1-8.
[5]Amudha J,Balasubramani G. Recent molecular advances to combat abiotic stress tolerance in crop plants[J]. Biotechnology and Molecular Biology Review,2011,6(2):31-58.
[6]Ali M,Muhammad I,Haq S V,et al. The CaChiVI2 gene of Capsicum annuum L. confers resistance against heat stress and infection of Phytophthora capsici[J]. Frontiers in Plant Science,2020,11:219-235.
[7]Ahammed G J,Li X,Wan H J,et al. SIWRKY81 reduces drought tolerance by attenuating proline biosynthesis in tomato[J]. Scientia Horticulturae,2020,270:109444.
[8]Jian W,Zheng Y X,Yu T T,et al. SINAC6,a NAC transcription factor,is involved in drought stress response and reproductive process in tomato[J]. Journal of Plant Physiology,2021,264:153483.
[9]Li F F,Chen X Y,Zhou S G,et al. Overexpression of SIMBP22 in tomato affects plant growth and enhances tolerance to drought stress[J]. Plant Science,2020,301:110672.
[10]Liu Y D,Wen L,Shi Y,et al. Stress-responsive tomato gene SIGRAS4 function in drought stress and abscisic acid signaling[J]. Plant Science,2021,304:110804.
[11]Gao Z,Bao Y F,Wang Z Y,et al. Gene silencing of SLZF57 reduces drought stress tolerance in tomato[J]. Plant Cell,Tissue and Organ Culture (PCTOC),2022,150(1):97-104.
[12]Zhao T T,Wu T R,Pei T,et al. Overexpression of SIGATA17 promotes drought tolerance in transgenic tomato plants by enhancing activation of the phenylpropanoid biosynthetic pathway[J]. Frontiers in Plant Science,2021,12:634888.
[13]Zhao T T,Wang Z Y,Bao Y F,et al. Downregulation of SL-ZH13 transcription factor gene expression decreases drought tolerance of tomato[J]. Journal of Integrative Agriculture,2019,18(7):1579-1586.
[14]Wang X Y,Liu Y,Li H X,et al. SISNAT2,a chloroplast-localized acetyltransferase,is involved in Rubisco lysine acetylation and negatively regulates drought stress tolerance in tomato[J]. Environmental and Experimental Botany,2022,201:105003.
[15]Mushtaq N,Wang Y,Fan J M,et al. Down-regulation of cytokinin receptor gene SIHK2 improves plant tolerance to drought,heat,and combined stresses in tomato[J]. Plants,2022,11(2):154-173.
[16]Wu H Q,Liu L,Chen Y F,et al. Tomato SICER1-1 catalyzes the synthesis of wax alkanes,increasing drought tolerance and fruit storability[J]. Horticulture Research,2022,9:uhac004-018.
[17]Liu L,Zhang J L,Xu J Y,et al. CRISPR/Cas9 targeted mutagenesis of SILBD40,a lateral organ boundaries domain transcription factor,enhances drought tolerance in tomato[J]. Plant Science,2020,301:110683.
[18]Li F F,Chen G P,Xie Q L,et al. Down-regulation of SIGT-26 gene confers dwarf plants and enhances drought and salt stress resistance in tomato[J]. Plant Physiology and Biochemistry,2023,203:108053.
[19]Devkar V,Thirumalaikumar V P,Xue G P,et al. Multifaceted regulatory function of tomato SITAF1 in the response to salinity stress[J]. New Phytologist,2020,225(4):1681-1698.
[20]Meng C,Yang M M,Wang Y X,et al. SIWHY2 interacts with SIRECA2 to maintain mitochondrial function under drought stress in tomato[J]. Plant Science,2020,301:110674.
[21]Zhao S S,Zhang Q K,Liu M Y,et al. Regulation of plant responses to salt stress[J]. International Journal of Molecular Sciences,2021,22(9):4609-4615.
[22]Hasanuzzaman M,Fujita M. Plant responses and tolerance to salt stress:physiological and molecular interventions[J]. International Journal of Molecular Sciences,2022,23(9):4810-4816.
[23]Tanveer K,Gilani S,Hussain Z,et al. Effect of salt stress on tomato plant and the role of calcium[J]. Journal of Plant Nutrition,2020,43(1):28-35.
[24]Ors S,Ekinci M,Yildirim E,et al. Interactive effects of salinity and drought stress on photosynthetic characteristics and physiology of tomato (Lycopersicon esculentum L.) seedlings[J]. South African Journal of Botany,2021,137:335-339.
[25]Xu Z J,Wang F,Ma Y B,et al. Transcription factor SIAREB1 is involved in the antioxidant regulation under saline–alkaline stress in tomato[J]. Antioxidants,2022,11(9):1673-1688.
[26]Wang W R,Liang J H,Wang G F,et al. Overexpression of PpSnRK1α in tomato enhanced salt tolerance by regulating ABA signaling pathway and reactive oxygen metabolism[J]. BMC Plant Biology,2020,20(1):128.
[27]Zhu M K,Chen G P,Zhang J L,et al. The abiotic stress-responsive NAC-type transcription factor SINAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum)[J]. Plant Cell Reports,2014,33(11):1851-1863.
[28]Gao Y F,Liu J K,Yang F M,et al. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum[J]. Physiologia Plantarum,2020,168(1):98-117.
[29]Wang Z,Hong Y C,Li Y M,et al. Natural variations in SISOS1 contribute to the loss of salt tolerance during tomato domestication[J]. Plant Biotechnology Journal,2021,19(1):20-22.
[30]Shu P,Li Y J,Li Z Y,et al. SIMAPK3 enhances tolerance to salt stress in tomato plants by scavenging ROS accumulation and up-regulating the expression of ethylene signaling related genes[J]. Environmental and Experimental Botany,2022,193:104698.
[31]Jia C G,Zhao S T,Bao T T,et al. Tomato BZR/BES transcription factor SIBZR1 positively regulates BR signaling and salt stress tolerance in tomato and Arabidopsis[J]. Plant Science,2021,302:110719.
[32]Meng X Q,Cai J,Deng L,et al. SISTE1 promotes abscisic acid-dependent salt stress-responsive pathways via improving ion homeostasis and reactive oxygen species scavenging in tomato[J]. Journal of Integrative Plant Biology,2020,62(12):1942-1966.
[33]Chen Y N,Li L,Tang B Y,et al. Silencing of SIMYB55 affects plant flowering and enhances tolerance to drought and salt stress in tomato[J]. Plant Science,2022,316:111166.
[34]Guo J E,Wang H H,Yang Y,et al. Histone deacetylase gene SIHDA3 is involved in drought and salt response in tomato[J]. Plant Growth Regulation,2023,99(2):359-372.
[35]Zhou R,Kong L P,Wu Z,et al. Physiological response of tomatoes at drought,heat and their combination followed by recovery[J]. Physiologia Plantarum,2019,165(2):144-154.
[36]Beena R. Research paradigm and inference of studies on high temperature stress in rice (Oryza sativa L.)[J]. Adv Plant Physiology,2013,14:497-511.
[37]Vijayakumar A,Shaji S,Beena R,et al. High temperature induced changes in quality and yield parameters of tomato (Solanum lycopersicum L.) and similarity coefficients among genotypes using SSR markers[J]. Heliyon,2021,7(2):e05988.
[38]段金虎,姜悦畅,韩菲,等. 高温胁迫对番茄苗期光合色素的影响[J]. 中国果菜,2023,43(10):47-52.
[39]Zhuang K Y,Gao Y Y,Liu Z B,et al. WHIRLY1 regulates HSP21.5A expression to promote thermotolerance in tomato[J]. Plant & Cell Physiology,2020,61(1):169-177.
[40]Mao L Z,Deng M H,Jiang S R,et al. Characterization of the DREBA4-Type transcription factor (SIDREBA4),which contributes to heat tolerance in tomatoes[J]. Frontiers in Plant Science,2020,11:554520.
[41]Xu X,Wang Q,Li W Q,et al. Overexpression of SIBBX17 affects plant growth and enhances heat tolerance in tomato[J]. International Journal of Biological Macromolecules,2022,206:799-811.
[42]Zhang S,Chen C,Dai S S,et al. A tomato putative metalloprotease SIEGY2 plays a positive role in thermotolerance[J]. Agriculture,2022,12(7):940-952.
[43]Hu Z J,Li J X,Ding S T,et al. The protein kinase CPK28 phosphorylates ascorbate peroxidase and enhances thermotolerance in tomato[J]. Plant Physiology,2021,186(2):1302-1317.
[44]Wang X Y,Zhang H J,Xie Q,et al. SISNAT interacts with HSP40,a molecular chaperone,to regulate melatonin biosynthesis and promote thermotolerance in tomato[J]. Plant Cell Physiology,2020,61(5):909-921.
[45]Zhang Y,Song H H,Wang X Y,et al. The roles of different types of trichomes in tomato resistance to cold,drought,whiteflies,and Botrytis[J]. Agronomy Journal,2020,10(3):411-427.
[46]吴宇欣,蔡昌杨,唐诗蓓,等. 植物响应低温的生长发育及分子机制研究进展[J]. 江苏农业科学,2023,51(19):1-9.
[47]Mesa T,Polo J,Arabia A,et al. Differential physiological response to heat and cold stress of tomato plants and its implication on fruit quality[J]. Journal of Plant Physiology,2022,268:153581.
[48]Wang M L,Hao J,Chen X H,et al. SlMYB102 expression enhances low-temperature stress resistance in tomato plants[J]. PeerJ,2020,8:e10059.
[49]Min D D,Zhou J X,Li J Z,et al. SlMYC2 targeted regulation of polyamines biosynthesis contributes to methyl jasmonate-induced chilling tolerance in tomato fruit[J]. Postharvest Biology and Technology,2021,174:111443.
[50]Zhuang K Y,Wang J Y,Jiao B Z,et al. WHIRLY1 maintains leaf photosynthetic capacity in tomato by regulating the expression of RbcS1 under chilling stress[J]. Journal of Experimental Botany,2020,71(12):3653-3663.
[51]Wang F,Wang X J,Zhang Y,et al. SIFHY3 and SlHY5 act compliantly to enhance cold tolerance through the integration of myo-inositol and light signaling in tomato[J]. New Phytologist,2022,233(5):2127-2143.
[52]Yang D Y,Li M,Ma N N,et al. Tomato SIGGP-LIKE gene participates in plant responses to chilling stress and pathogenic infection[J]. Plant Physiology and Biochemistry,2017,112:218-226.
[53]Hu T X,Wang S F,Wang Q,et al. A tomato dynein light chain gene SILC6D is a negative regulator of chilling stress[J]. Plant Science,2021(303):110753.
[54]Zhang L Y,Jiang X C,Liu Q Y,et al. The HY5 and MYB15 transcription factors positively regulate cold tolerance in tomato via the CBF pathway[J]. Plant Cell and Environment,2020,43(11):2712-2726.
[55]Ma X,Gai W X,Li Y,et al. The CBL-interacting protein kinase CaCIPK13 positively regulates defence mechanisms against cold stress in pepper[J]. Journal of Experimental Botany,2022,73(5):1655-1667.
[56]Han N N,Fan S Y,Zhang T T,et al. SIHY5 is a necessary regulator of the cold acclimation response in tomato[J]. Plant Growth Regulation,2020,91(1):1-12.
[57]周明,李常保. 我国番茄种业发展现状及展望[J]. 蔬菜,2022(5):6-10.
[58]Sun C L,Deng L,Du M M,et al. A transcriptional network promotes anthocyanin biosynthesis in tomato flesh[J]. Molecular Plant,2020,13(1):42-58.
[59]Krishna R,Ansari W A,Soumia P S,et al. Biotechnological interventions in tomato (Solanum lycopersicum) for drought stress tolerance:achievements and future prospects[J]Biotechnology,2022,11(4):48-70.
[1]何从亮,毛久庚,甘小虎,等.玻璃温室番茄长季节基质袋栽培技术[J].江苏农业科学,2013,41(04):158.
[2]李永灿,余文贵,陈怀谷,等.番茄灰霉病菌产毒条件优化[J].江苏农业科学,2013,41(05):94.
Li Yongcan,et al.Optimization of toxigenic conditions of tomato Botrytis cinerea[J].Jiangsu Agricultural Sciences,2013,41(4):94.
[3]赵秋月,甘潇,张广臣.Na2CO3胁迫对番茄幼苗生长的影响[J].江苏农业科学,2013,41(05):128.
Zhao Qiuyue,et al.Effect of Na2CO3 stress on growth of tomato seedlings[J].Jiangsu Agricultural Sciences,2013,41(4):128.
[4]耿德刚,徐俊伟,戈振超,等.温室大棚番茄滴灌试验研究及效益分析[J].江苏农业科学,2013,41(05):132.
Geng Degang,et al.Drip irrigation experimental and benefit analysis on greenhouse tomato[J].Jiangsu Agricultural Sciences,2013,41(4):132.
[5]杜中平,聂书明.不同配方基质对番茄生长特性、光合特性及产量的影响[J].江苏农业科学,2013,41(05):138.
Du Zhongping,et al.Effects of different substrates on growth,photosynthetic characteristics and yield of tomato[J].Jiangsu Agricultural Sciences,2013,41(4):138.
[6]赵河,毛秀杰,叶景学.抗叶霉病不同基因型番茄的光合特性[J].江苏农业科学,2014,42(11):185.
Zhao He,et al(8).Photosynthetic characteristics of different genotypes of tomato with resistance to leaf mold[J].Jiangsu Agricultural Sciences,2014,42(4):185.
[7]陈素娟,孙娜娜.不同基质配比对番茄秧苗生长的影响[J].江苏农业科学,2013,41(06):128.
Chen Sujuan,et al.Effect of different substrate compositions on growth of tomato seedling[J].Jiangsu Agricultural Sciences,2013,41(4):128.
[8]孙禛禛,吴秋霞,温新宇,等.转反义LetAPX基因番茄抗氧化酶活性在苗期、花期、果期的变化[J].江苏农业科学,2015,43(12):188.
Sun Zhenzhen,et al.Study on antioxidant enzymes activity during seedling,flowering and fruiting of tomato with antisense LetAPX gene[J].Jiangsu Agricultural Sciences,2015,43(4):188.
[9]李晓慧,张恩让,何玉安,等.亚高温及外源物质调节下番茄的生理响应[J].江苏农业科学,2013,41(07):135.
Li Xiaohui,et al.Physiological response of tomato under the regulation of sub-high temperature and exogenous substances[J].Jiangsu Agricultural Sciences,2013,41(4):135.
[10]李建宏,张楠,张泽,等.番茄红素提取与测定方法的优化[J].江苏农业科学,2013,41(08):259.
Li Jianhong,et al.Optimization of lycopene extraction and determination method[J].Jiangsu Agricultural Sciences,2013,41(4):259.