|本期目录/Table of Contents|

[1]凤舞剑,张莹,韩波,等.基于转录组和AlphaFold快速鉴定水稻特异性响应稻瘟病菌侵染的转录因子和靶标[J].江苏农业科学,2025,53(4):23-30.
 Feng Wujian,et al.Rapid identification of rice-specific transcription factors and targets in response to Magnaporthe oryzae infection based on transcriptome and AlphaFold[J].Jiangsu Agricultural Sciences,2025,53(4):23-30.
点击复制

基于转录组和AlphaFold快速鉴定水稻特异性响应稻瘟病菌侵染的转录因子和靶标(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第53卷
期数:
2025年第4期
页码:
23-30
栏目:
抗病基因
出版日期:
2025-02-20

文章信息/Info

Title:
Rapid identification of rice-specific transcription factors and targets in response to Magnaporthe oryzae infection based on transcriptome and AlphaFold
作者:
凤舞剑张莹 韩波强承魁
徐州生物工程职业技术学院/徐州市现代农业生物技术重点实验室,江苏徐州 221006
Author(s):
Feng Wujianet al
关键词:
转录因子稻瘟病菌水稻AlphaFold3作用靶标
Keywords:
-
分类号:
S435.111.4+1
DOI:
-
文献标志码:
A
摘要:
转录因子是调控植物免疫响应的关键因子之一。为鉴定水稻早期响应稻瘟病菌侵染的关键转录因子及相互作用的靶基因,探究早期病原菌诱导型转录因子的调控功能,为水稻的免疫机制研究和抗病种质创制提供理论依据,利用生物信息学方法对水稻基因组中的转录因子进行鉴定,通过水稻-稻瘟病菌互作转录组和Mfuzz表达模式特征分析,筛选受稻瘟病菌诱导的转录因子和参与调控的功能。利用AlphaFold3对关键的转录因子和靶基因构建蛋白-DNA相互作用的复合体模型,并对转录因子潜在的结合靶标进行筛选。结果在水稻中总共鉴定到1 948个转录因子,约89类转录因子。其中1、3、2、6号染色体的转录因子数目较多,分别为279、250、235、176个。共鉴定到673个转录因子受稻瘟病菌侵染水稻诱导,其中主要包含11%的WRKY、11%的MYB和11%的C2H2转录因子。这些转录因子主要调控植物信号转导、植物-病原菌的相互作用和MAPK信号、响应乙烯、响应水杨酸、响应茉莉酸、天然免疫和对细菌的防御响应等功能;鉴定到集合1和集合6中的转录因子受病原菌特异性诱导后表达量持续增加;利用AlphaFold3发现Os5t0343400编码的WRKY转录因子与SIB1基因启动子存在互作。结果表明,水稻在响应稻瘟病菌早期侵染中,约172个转录因子通过调控激素和免疫防御等途径响应稻瘟病菌的侵染,并预测到1个响应病原菌的转录因子及作用靶标在水稻免疫响应中发挥重要作用。
Abstract:
-

参考文献/References:

[1]卢椰子,邱结华,蒋楠,等. 稻瘟病菌效应子研究进展[J/OL]. 中国水稻科学,2024:1-13(2024-09-05)[2024-10-11]. https://kns.cnki.net/kcms2/article/abstract?v=14CuGbpFC1A-OxGI4gbP_oucG9SKxHlnUuQHONQ3pPvaU3-EbJA9pimQMwsbt 8wQmJoV3ukQOdXBJg-e7gp6RPQukVaXk7Nh5kE3_4Zu0MgNMs GLLhWiGIly9GlI_-T91jxRsq6z6FwlVxNUAAjM3LoVmHGNrwRN bYpxKNlBOYL6GRaYY9WZ8RmAu8dizyjv&uniplatform=NZKPT&l anguage=CHS.
[2]Baillo E H,Kimotho R N,Zhang Z,et al. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement[J]. Genes,2019,10(10):771.
[3]Wang H,Wang H,Shao H,et al. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology[J]. Frontiers in Plant Science,2016,7:1-13.
[4]Li W,Zhu Z,Chern M,et al. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance[J]. Cell,2017,170(1):114-126.
[5]Wang L,Guo D,Zhao G,et al. Group Ⅱc WRKY transcription factors regulate cotton resistance to Fusarium oxysporum by promoting GhMKK2-mediated flavonoid biosynthesis[J]. New Phytologist,2022,236(1):249-265.
[6]白辉,宋振君,王永芳,等. 谷子抗锈病反应相关MYB转录因子的鉴定与表达[J]. 中国农业科学,2019,52(22):4016-4027.
[7]Chen C,Jost M,Outram M A,et al. A pathogen-induced putative NAC transcription factor mediates leaf rust resistance in barley[J]. Nature Communications,2023,14(1):5468.
[8]Xu Y,Singer S D,Chen G.Protein interactomes for plant lipid biosynthesis and their biotechnological applications[J]. Plant Biotechnology Journal,2023,21(9):1734-1744.
[9]Xia Y,Sun G,Xiao J,et al. AlphaFold-guided redesign of a plant pectin methylesterase inhibitor for broad-spectrum disease resistance[J]. Molecular Plant,2024,17(9):1344-1368.
[10]Farooq M A,Gao S,Hassan M A,et al. Artificial intelligence in plant breeding[J]. Trends in Genetics,2024,40(10):891-908.
[11]Zheng Y,Jiao C,Sun H,et al. iTAK:A program for genome-wide prediction and classification of plant transcription factors,transcriptional regulators,and protein kinases[J]. Molecular Plant,2016,9(12):1667-1670.
[12]Cantalapiedra C P,Hernández-Plaza A,Letunic I,et al. eggNOG-mapper v2:functional annotation,orthology assignments,and domain prediction at the metagenomic scale[J]. Molecular Biology and Evolution,2021,38(12):5825-5829.
[13]Li C,Deans N C,Buell C R. “Simple Tidy GeneCoEx”:a gene co-expression analysis workflow powered by tidyverse and graph-based clustering in R[J]. The Plant Genome,2023,16(2):20323.
[14]Chen C,Chen H,Zhang Y T,et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant,2020,13(8):1194-1202.
[15]Gene Ontology Consortium. Gene ontology consortium:going forward[J]. Nucleic Acids Research,2015,43:1049-1056.
[16]Kanehisa M,Furumichi M,Tanabe M,et al. KEGG:new perspectives on genomes,pathways,diseases and drugs[J]. Nucleic Acids Research,2017,45:353-361.
[17]Kumar L,Futschik M. Mfuzz:a software package for soft clustering of microarray data[J]. Bioinformation,2007,2(1):5-7.
[18]Rauluseviciute I,Riudavets-Puig R,Blanc-Mathieu R,et al. JASPAR 2024:20th anniversary of the open-access database of transcription factor binding profiles[J]. Nucleic Acids Research,2024,52(1):174-D182.
[19]Abramson J,Adler J,Dunger J,et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3[J]. Nature,2024,630(8016):493-500.
[20]Liu F,Xi M W,Liu T,et al The central role of transcription factors in bridging biotic and abiotic stress responses for plants resilience[J]. New Crops,2024,630(8016):493-500.
[21]段俊枝,杨翠苹,王楠,等. WRKY转录因子在植物耐盐基因工程中的应用进展[J]. 江苏农业科学,2023,51(5):71-80.
[22]Hadrami A,Adam L R,Daayf F. Biocontrol treatments confer protection against Verticillium dahliae infection of potato by inducing antimicrobial metabolites[J]. Molecular Plant-Microbe Interactions Journal,2011,24,328–335.
[23]Xu S,Wei X,Yang Q,et al. A KNOX Ⅱ transcription factor suppresses the NLR immune receptor BRG8-mediated immunity in rice[J]. Plant Communications,2024,5(10):1001.
[24]Wang J,Zhou L,Shi H,et al. A single transcription factor promotes both yield and immunity in rice[J]. Science,2018,361(6406):1026-1028.
[25]Wang Z,Li X,Yao X,et al. MYB44 regulates PTI by promoting the expression of EIN2 and MPK3/6 in Arabidopsis[J]. Plant Communications,2023,4(6):1628.
[26]Zheng C,Zhou J,Yuan X,et al. Elevating plant immunity by translational regulation of a rice WRKY transcription factor[J]. Plant Biotechnol J,2024,22(4):1033-1048.
[27]Fan H,Shen X,Ding Y,et al. DkWRKY transcription factors enhance persimmon resistance to Colletotrichum horii by promoting lignin accumulation through DkCAD1 promotor interaction[J]. Stress Biology,2024,4(1):17.
[28]Meng F,Yang C,Cao J,et al. A bHLH transcription activator regulates defense signaling by nucleo-cytosolic trafficking in rice[J]. Journal of Integrative Plant Biology,2020,62(10):1552-1573.
[29]Song N,Wu J. NaWRKY70 is a key regulator of Nicotiana attenuata resistance to Alternaria alternata through regulation of phytohormones and phytoalexins biosynthesis[J]. New Phytologist,2024,242(3):1289-1306.
[30]杜超. WRKY转录因子家族在植物响应逆境胁迫中的功能及应用[J]. 草业科学,2021,38(7):1287-1300.
[31]邱文怡,王诗雨,李晓芳,等. MYB转录因子参与植物非生物胁迫响应与植物激素应答的研究进展[J]. 浙江农业学报,2020,32(7):1317-1328.
[32]Xu Y,Zou S,Zeng H,et al. A NAC transcription factor TuNAC69 contributes to ANK-NLR-WRKY NLR-mediated stripe rust resistance in the diploid wheat Triticum urartu[J]. International Journal of Molecular Sciences,2022,23(1):564.
[33]李冬月,原文霞,郑超,等. bZIP转录因子在植物激素介导的抗病抗逆途径中的作用[J]. 浙江农业学报,2017,29(1):168-175.
[34]Jiang Y,Yu D.The WRKY57 transcription factor affects the expression of jasmonate ZIM-Domain genes transcriptionally to compromise Botrytis cinerea resistance[J]. Plant Physiology,2016,171(4):2771-82.
[35]Homma F,Huang J,van der Hoorn R A L. AlphaFold-multimer predicts cross-kingdom interactions at the plant-pathogen interface[J]. Nature Communications,2023,14(1):6040.

相似文献/References:

[1]刘骥,王燕,郭建华,等.盐胁迫诱导的TabZIP60转录因子的筛选与分析[J].江苏农业科学,2013,41(08):18.
 Liu Ji,et al.Screening and analysis of TabZIP60 transcription factor induced by salt stress[J].Jiangsu Agricultural Sciences,2013,41(4):18.
[2]周昊,徐寸发,齐中强,等.不同胁迫因子对稻瘟病菌菌丝形态的影响[J].江苏农业科学,2015,43(12):150.
 Zhou Hao,et al.Effects of different inhibition effectors on mycelium morphogenesis of Magnaporthe oryzae[J].Jiangsu Agricultural Sciences,2015,43(4):150.
[3]牛伟博.DREB转录因子及其在植物抗逆育种中的应用进展[J].江苏农业科学,2014,42(08):17.
 Niu Weibo.Progress on DREB transcription factor and its application in stress-resistance breeding of plants[J].Jiangsu Agricultural Sciences,2014,42(4):17.
[4]王彩云,张晓东,沈涛,等.龙胆苦苷生物合成途径研究进展[J].江苏农业科学,2014,42(03):4.
 Wang Caiyun,et al.Research progress of biosynthesis pathway of gentiopicroside[J].Jiangsu Agricultural Sciences,2014,42(4):4.
[5]王伟舵,刘永锋.中国稻瘟病菌遗传多样性研究进展[J].江苏农业科学,2016,44(06):196.
 Wang Weiduo,et al.Research progress on Chinas genetic diversity of Magnaporthe grisea[J].Jiangsu Agricultural Sciences,2016,44(4):196.
[6]马军韬,张国民,辛爱华,等.2套鉴别品种对哈尔滨市、鸡西市稻瘟病菌的致病性分析[J].江苏农业科学,2016,44(07):165.
 Ma Juntao,et al.Pathogenic analysis of Magnaporthe oryzae from Harbin City and Jixi City using 2 differential varieties[J].Jiangsu Agricultural Sciences,2016,44(4):165.
[7]张翠荣,李 明,李荣玉.5种植物粗提物对稻瘟病菌的抑菌活性[J].江苏农业科学,2016,44(08):162.
 Zhang Cuirong,et al.Bacteriostatic activity of crude extracts from five kinds of plants[J].Jiangsu Agricultural Sciences,2016,44(4):162.
[8]马军韬,张国民,辛爱华,等.24个抗瘟基因与哈尔滨市稻瘟病菌互作分析[J].江苏农业科学,2016,44(08):164.
 Ma Juntao,et al.Interaction analysis of 24 blast-resistance genes and Magnaporthe oryzae from Harbin City[J].Jiangsu Agricultural Sciences,2016,44(4):164.
[9]徐婧,沈晓兰,周捷,等.生物农药茶多酚微乳剂的制备及其对稻瘟病菌的抑制效果[J].江苏农业科学,2017,45(19):191.
 Xu Jing,et al.Preparation of biological pesticide tea polyphenols micro emulsion and its inhibitory effect on Magnaporthe grisea[J].Jiangsu Agricultural Sciences,2017,45(4):191.
[10]马军韬,张国民,张丽艳,等.黑龙江省水稻品种抗性与稻瘟病病菌致病性年际变化趋势分析[J].江苏农业科学,2017,45(20):109.
 Ma Juntao,et al.Analysis of interannual variability of rice cultivar resistance and Magnaporthe grisea pathogenicity in Heilongjiang Province[J].Jiangsu Agricultural Sciences,2017,45(4):109.

备注/Memo

备注/Memo:
收稿日期:2024-11-04
基金项目:现代农业产业科技服务项目(编号:KC23139);江苏省徐州市科技重点研发项目(编号:KC21121)。
作者简介:凤舞剑(1976—),男,江苏睢宁人,硕士,副教授,主要从事农业有害生物菌原分离、鉴定及综合防控技术研究。E-mail:fwjedu@126.com。
更新日期/Last Update: 2025-02-20