[1]李佳,刘涛,马菊莲,等. 烟草响应干旱胁迫与抗旱遗传育种研究进展[J]. 江苏农业科学,2023,51(8):34-43.
[2]刘玲玲,丁永乐,程传策,等. 4个烟草品种干旱胁迫下萌发和苗期生理特性及抗旱性评价[J]. 江苏农业科学,2015,43(5):104-107.
[3]王亚虹,许自成,高森,等. 烟草干旱胁迫研究进展[J]. 节水灌溉,2016(12):103-107,111.
[4]王淑叶,伍国强,魏明. WRKY转录因子调控植物逆境胁迫响应的作用机制[J]. 生物工程学报,2024,40(1):35-52.
[5]胡雅丹,伍国强,刘晨,等. MYB转录因子在调控植物响应逆境胁迫中的作用[J]. 生物技术通报,2024,40(6):5-22.
[6]Li X X,Wang Q,Guo C,et al. NtNAC053,a novel NAC transcription factor,confers drought and salt tolerances in tobacco[J]. Frontiers in Plant Science,2022,13:817106.
[7]Zhang H F,Pei Y P,Zhu F L,et al. CaSnRK2.4-mediated phosphorylation of CaNAC035 regulates abscisic acid synthesis in pepper (Capsicum annuum L.) responding to cold stress[J]. The Plant Journal,2024,117(5):1377-1391.
[8]Raineri J,Wang S H,Peleg Z,et al. The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress[J]. Plant Molecular Biology,2015,88(4/5):401-413.
[9]Wu X,Tao M Z,Meng Y,et al. The role of WRKY47 gene in regulating selenium tolerance in Arabidopsis thaliana[J]. Plant Biotechnology Reports,2020,14(1):121-129.
[10]Zhang X Q,Zhang Y X,Li M,et al. Overexpression of the WRKY transcription factor gene NtWRKY65 enhances salt tolerance in tobacco (Nicotiana tabacum)[J]. BMC Plant Biology,2024,24(1):326.
[11]Zhou Q Y,Tian A G,Zou H F,et al. Soybean WRKY-type transcription factor genes,GmWRKY13,GmWRKY21,and GmWRKY54,confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants[J]. Plant Biotechnology Journal,2008,6(5):486-503.
[12]Wang Y,Gai W X,Yuan L D,et al. Heat-inducible SlWRKY3 confers thermotolerance by activating the SlGRXS1 gene cluster in tomato[J]. Horticultural Plant Journal,2024,10(2):515-531.
[13]Bai Y X,Shi K,Shan D Q,et al. The WRKY17-WRKY50 complex modulates anthocyanin biosynthesis to improve drought tolerance in apple[J]. Plant Science,2024,340:111965.
[14]Dong Q L,Tian Y,Zhang X M,et al. Overexpression of the transcription factor MdWRKY115 improves drought and osmotic stress tolerance by directly binding to the MdRD22 promoter in apple[J]. Horticultural Plant Journal,2024,10(3):629-640.
[15]An X,Jin G R,Luo X H,et al. Transcriptome analysis and transcription factors responsive to drought stress in Hibiscus cannabinus[J]. PeerJ,2020,8:e8470.
[16]Wang C T,Ru J N,Liu Y W,et al. The maize WRKY transcription factor ZmWRKY40 confers drought resistance in transgenic Arabidopsis[J]. International Journal of Molecular Sciences,2018,19(9):2580.
[17]贾振宇. 烟草转录因子NtWRKY65在干旱和低氮胁迫中的功能研究[D]. 郑州:河南农业大学,2022:21-27.
[18]Xu M L,Tong Q,Wang Y,et al. Transcriptomic analysis of the grapevine LEA gene family in response to osmotic and cold stress reveals a key role for VamDHN3[J]. Plant & Cell Physiology,2020,61(4):775-786.
[19]李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2000.
[20]吴颂如,陈婉芬,周燮. 酶联免疫法(ELISA)测定内源植物激素[J]. 植物生理学通讯,1988,24(5):53-57.
[21]Ma X L,Xin Z Y,Wang Z Q,et al. Identification and comparative analysis of differentially expressed miRNAs in leaves of two wheat (Triticum aestivum L.) genotypes during dehydration stress[J]. BMC Plant Biology,2015,15:21.
[22]张翠梅. 不同抗旱性紫花苜蓿响应干旱的生理及分子机制研究[D]. 兰州:甘肃农业大学,2019.
[23]朱长保,徐辰峰,刘仁梅,等. 干旱胁迫下水稻转录因子表达变化[J]. 中国农学通报,2019,35(6):108-114.
[24]Yu Y A,Zhang L. Overexpression of TaWRKY53 enhances drought tolerance in transgenic Arabidopsis plants[J]. South African Journal of Botany,2022,148:605-614.
[25]Zhang L L,Zhang R,Ye X,et al. Overexpressing VvWRKY18 from grapevine reduces the drought tolerance in Arabidopsis by increasing leaf stomatal density[J]. Journal of Plant Physiology,2022,275:153741.
[26]Li Y,Chen H,Li S T,et al. GhWRKY46 from upland cotton positively regulates the drought and salt stress responses in plant[J]. Environmental and Experimental Botany,2021,186:104438.
[27]Wen W W,Wang R Y,Su L T,et al. MsWRKY11,activated by MsWRKY22,functions in drought tolerance and modulates lignin biosynthesis in alfalfa (Medicago sativa L.)[J]. Environmental and Experimental Botany,2021,184:104373.
[28]Ahammed G J,Li X,Wan H J,et al. SlWRKY81 reduces drought tolerance by attenuating proline biosynthesis in tomato[J]. Scientia Horticulturae,2020,270:109444.
[29]张翠梅,师尚礼,吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响[J]. 中国农业科学,2018,51(5):868-882.
[30]李鹏辉,向金友,王林,等. 干旱胁迫下外源褪黑素对烟草幼苗生理特性的影响[J]. 中国农业科技导报,2019,21(5):41-48.
[31]崔凯东,张雪,顾开元,等. 干旱胁迫下外源褪黑素对旺长期烤烟生理特性的影响[J]. 烟草科技,2024,57(4):42-52.
[32]Hou L X,Fan X X,Hao J,et al. Negative regulation by transcription factor VvWRKY13 in drought stress of Vitis vinifera L.[J]. Plant Physiology and Biochemistry,2020,148:114-121.
[33]Gulzar F,Fu J Y,Zhu C Y,et al. Maize WRKY transcription factor ZmWRKY79 positively regulates drought tolerance through elevating ABA biosynthesis[J]. International Journal of Molecular Sciences,2021,22(18):10080.
[34]Liu Y,Cao Y P. GmWRKY17-mediated transcriptional regulation of GmDREB1D and GmABA2 controls drought tolerance in soybean[J]. Plant Molecular Biology,2023,113(4/5):157-170.
[35]李满. 转录因子NtWRKY65在烟草盐胁迫中的功能分析[D]. 郑州:河南农业大学,2023:15-18.
[1]刘中威,杨铁钊,李洪臣,等.不同浓香型烟草品种(系)产量、质量比较分析[J].江苏农业科学,2013,41(04):90.
[2]国鸿蔷,谢艳红.膜下滴灌条件下不同水肥设计对烟草生长和产量的影响[J].江苏农业科学,2013,41(04):96.
[3]唐嘉成,兰艳丰,夏博,等.施用有机肥对防治烟草上向日葵列当的效果[J].江苏农业科学,2013,41(04):119.
[4]郑传刚.不同育苗方式烟苗生理指标与烟苗素质的相关性[J].江苏农业科学,2013,41(05):70.
Zheng Chuangang.Correlation analysis of physical signs and quality of tobacco seedlings under different breeding styles[J].Jiangsu Agricultural Sciences,2013,41(4):70.
[5]涂永高,韦克苏,张恒,等.EM菌及土壤活化剂在烟草上的施用效果[J].江苏农业科学,2014,42(12):123.
Tu Yonggao,et al.Application effects of EM bacteria and soil activator on tobacco[J].Jiangsu Agricultural Sciences,2014,42(4):123.
[6]陈绍凯,刘仁祥,李全鑫,等.不同烟草类型烟叶质体色素与化学成分分析[J].江苏农业科学,2013,41(06):291.
Chen Shaokai,et al.Analysis of plastid pigment and chemical composition in leaves of different types of tobaccos[J].Jiangsu Agricultural Sciences,2013,41(4):291.
[7]梁洪涛,孙明辉,苏慧清,等.框架式烟草散叶烘烤技术应用效果分析[J].江苏农业科学,2013,41(07):252.
Liang Hongtao,et al.Application effect analysis of frame type scattered leaf curing technique[J].Jiangsu Agricultural Sciences,2013,41(4):252.
[8]符勇,周忠发,王昆,等.基于贵州喀斯特高原山区的烟草种植适宜性研究[J].江苏农业科学,2014,42(09):92.
Fu Yong,et al.Study on planting suitability of tobacco based on Guizhou karst mountain plateau[J].Jiangsu Agricultural Sciences,2014,42(4):92.
[9]李晓君,王绍梅,谢艳兰,等.农杆菌渗透法转化烟草条件的优化[J].江苏农业科学,2014,42(09):45.
Li Xiaojun,et al.Optimization of transformation conditions of tobacco by agrobacterium-mediated vacuum infiltration method[J].Jiangsu Agricultural Sciences,2014,42(4):45.
[10]吴敏兰,贾洋洋,李荭荭,等.铬胁迫对烟草叶片叶绿素荧光特性和活性氧代谢系统的影响[J].江苏农业科学,2014,42(08):92.
Wu Minlan,et al.Effects of chromium stress on characteristics of chlorophyll fluorescence and active oxygen metabolism system in tobacco leaves[J].Jiangsu Agricultural Sciences,2014,42(4):92.